This paper presents a detailed analysis of the thermal conductivity behaviors exhibited by a diverse array of nanostructured materials, ranging from multilayer graphene nanocomposites to semiconductor-based nanostructures such as Bi0.5Sb1.5Te3 and In0.53Ga0.47As composites. The investigation extends to superlattices, nanowires, and hybrid nanostructures, encompassing materials like hexagonal boron nitride flakes, iron oxide nanoporous films, and organic-inorganic hybrid materials. The thermal conductivity of these materials is characterized by distinct trends, with some showcasing crystal-like behavior and others demonstrating glass-like characteristics. The analysis employs empirical expressions to discern the contributions of phonons and diffusons in crystal-like materials and incorporates Peierls contributions and Arrhenius-type terms for glass-like behavior. Noteworthy observations include deviations in fitting certain materials at lower temperatures and the identification of negative diffuson contributions in specific cases. These findings contribute to a nuanced understanding of thermal transport in nanostructured materials and have implications for applications in advanced thermal management systems and thermoelectric devices. The extracted parameters provide valuable insights for researchers exploring the thermal conductivity of diverse nanostructured materials.

1.
A. I.
Krivchikov
,
Y. V.
Horbatenko
,
O. A.
Korolyuk
,
O. O.
Romantsova
,
O. O.
Kryvchikov
,
D.
Szewczyk
, and
A.
Jezowski
, “
Exponential approximation of the coherence contribution to the thermal conductivity of complex clathrate-type crystals
,”
Materialia
32
,
101944
(
2023
).
2.
A. I.
Krivchikov
and
A.
Jeżowski
, “
Thermal conductivity of glasses and disordered crystals
,” in
Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(
World Scientific
,
2022
), p.
69
.
3.
F.
DeAngelis
,
M. G.
Muraleedharan
,
J.
Moon
,
H. R.
Seyf
,
A. J.
Minnich
,
A. J. H.
McGaughey
, and
A.
Henry
, “
Thermal transport in disordered materials
,”
Nanoscale Microscale Thermophys. Eng.
23
,
81
(
2019
).
4.
R.
Hanus
,
R.
Gurunathan
,
L.
Lindsay
,
M. T.
Agne
,
J.
Shi
,
S.
Graham
, and
G.
Jeffrey Snyder
, “
Thermal transport in defective and disordered materials
,”
Appl. Phys. Rev.
8
,
031311
(
2021
).
5.
S.
Shin
,
Q.
Wang
,
J.
Luo
, and
R.
Chen
, “
Advanced materials for high-temperature thermal transport
,”
Adv. Funct. Mater.
30
,
1904815
(
2020
).
6.
T.
Bernges
,
M.
Peterlechner
,
G.
Wilde
,
M. T.
Agne
, and
W. G.
Zeier
, “
Analytical model for two-channel phonon transport engineering
,”
Mater. Today Phys.
35
,
101107
(
2023
).
7.
M.
Simoncelli
,
N.
Marzari
, and
F.
Mauri
, “
Unified theory of thermal transport in crystals and glasses
,”
Nat. Phys.
15
,
809
(
2019
).
8.
M.
Simoncelli
,
N.
Marzari
, and
F.
Mauri
, “
Wigner formulation of thermal transport in solids
,”
Phys. Rev. X
12
,
041011
(
2022
).
9.
M.
Simoncelli
,
F.
Mauri
, and
N.
Marzari
, “
Thermal conductivity of glasses: First-principles theory and applications
,”
npj Comput. Mater.
9
,
106
(
2023
).
10.
K. M. F.
Shahil
, and
A. A.
Balandin
, “
Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials
,”
Nano Lett.
12
,
861
(
2012
).
11.
J.
Zheng
,
Y.
Kodera
,
X.
Xu
,
S.
Shin
,
K. M.
Chung
,
T.
Imai
,
R. V.
Ihnfeldt
,
J. E.
Garay
, and
R.
Chen
, “
Suppressing thermal conductivity of nano-grained thermoelectric material using acoustically hard nanoparticles
,”
J. Appl. Phys.
130
,
235106
(
2021
).
12.
W.
Kim
,
S. L.
Singer
,
A.
Majumdar
,
J. M. O.
Zide
,
D.
Klenov
,
A. C.
Gossard
, and
S.
Stemmer
, “
Reducing thermal conductivity of crystalline solids at high temperature using embedded nanostructures
,”
Nano Lett.
8
,
2097
(
2008
).
13.
M. E.
DeCoster
,
X.
Chen
,
K.
Zhang
,
C. M.
Rost
,
E. R.
Hoglund
,
J. M.
Howe
,
T. E.
Beechem
,
H.
Baumgart
, and
P. E.
Hopkins
, “
Thermal conductivity and phonon scattering processes of ALD grown PbTe–PbSe thermoelectric thin films
,”
Adv. Funct. Mater.
29
,
1904073
(
2019
).
14.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
, “
Thermal transport through GaN–SiC interfaces from 300 to 600 K
,”
Appl. Phys. Lett.
107
,
091605
(
2015
).
15.
J.
Yang
,
Y.
Yang
,
S. W.
Waltermire
,
X.
Wu
,
H.
Zhang
,
T.
Gutu
,
Y.
Jiang
,
Y.
Chen
,
A. A.
Zinn
,
R.
Prasher
,
T. T.
Xu
, and
D.
Li
, “
Enhanced and switchable nanoscale thermal conduction due to van der waals interfaces
,”
Nat. Nanotech.
7
,
91
(
2012
).
16.
L.
Shi
,
D.
Li
,
C.
Yu
,
W.
Jang
,
D.
Kim
,
Z.
Yao
,
P.
Kim
, and
A.
Majumdar
, “
Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device
,”
J. Heat Transfer
125
,
881
(
2003
).
17.
D.
Meyer
,
D.
Metternich
,
P.
Henning
,
J. P.
Bange
,
R.
Gruhl
,
V.
Bruchmann-Bamberg
,
V.
Moshnyaga
, and
H.
Ulrichs
, “
Coherent phonon transport and minimum of thermal conductivity in LaMnO3/SrMnO3 superlattices
”, arXiv:2108.05860 (
2021
).
18.
T.
Ishibe
,
R.
Okuhata
,
T.
Kaneko
,
M.
Yoshiya
,
S.
Nakashima
,
A.
Ishida
, and
Y.
Nakamura
, “
Heat transport through propagon-phonon interaction in epitaxial amorphous-crystalline multilayers
,”
Commun. Phys.
4
,
153
(
2021
).
19.
J.
Alvarez-Quintana
,
X.
Alvarez
,
J.
Rodriguez-Viejo
,
D.
Jou
,
P. D.
Lacharmoise
,
A.
Bernardi
,
A. R.
Goñi
, and
M. I.
Alonso
, “
Cross-plane thermal conductivity reduction of vertically uncorrelated Ge∕Si quantum dot superlattices
,”
Appl. Phys. Lett.
93
,
013112
(
2008
).
20.
C.
Chiritescu
,
D. G.
Cahill
,
N.
Nguyen
,
D.
Johnson
,
A.
Bodapati
,
P.
Keblinski
, and
P.
Zschack
, “
Ultralow thermal conductivity in disordered, layered WSe2 crystals
,”
Science
315
,
351
(
2007
).
21.
G. P.
Srivastava
, “
Tuning phonon properties in thermoelectric materials
,”
Rep. Prog. Phys.
78
,
026501
(
2015
).
22.
Y. K.
Koh
,
Y.
Cao
,
D. G.
Cahill
, and
D.
Jena
, “
Heat-transport mechanisms in superlattices
,”
Adv. Funct. Mater.
19
,
610
(
2009
).
23.
J. G.
Kang
,
H.
Jang
,
J.
Ma
,
Q.
Yang
,
K.
Hattar
,
Z.
Diao
,
R.
Yuan
,
J.
Zuo
,
S.
Sinha
,
D. G.
Cahill
, and
P. V.
Braun
, “
Ultralow thermal conductivity in nanoporous crystalline Fe3O4
,”
J. Phys. Chem. C
125
,
6897
(
2021
).
24.
C. T.
Bui
,
R.
Xie
,
M.
Zheng
,
Q.
Zhang
,
C. H.
Sow
,
B.
Li
, and
J. T. L.
Thong
, “
Diameter-dependent thermal transport in individual ZnO nanowires and its correlation with surface coating and defects
,”
Small
8
,
738
(
2012
).
25.
J. W.
Roh
,
S. Y.
Jang
,
J.
Kang
,
S.
Lee
,
J.-S.
Noh
,
W.
Kim
,
J.
Park
, and
W.
Lee
, “
Size-dependent thermal conductivity of individual single-crystalline PbTe nanowires
,”
Appl. Phys. Lett.
96
,
103101
(
2010
).
26.
G. R.
Jaffe
,
K. J.
Smith
,
K.
Watanabe
,
T.
Taniguchi
,
M. G.
Lagally
,
M. A.
Eriksson
, and
V. W.
Brar
, “
Long phonon mean free paths observed in cross-plane thermal-conductivity measurements of exfoliated hexagonal boron nitride
,” arXiv:2103.07452 (
2021
).
27.
Z.
Pan
,
L.
Yang
,
Y.
Tao
,
Y.
Zhu
,
Y.-Q.
Xu
,
Z.
Mao
, and
D.
Li
, “
Net negative contributions of free electrons to the thermal conductivity of NbSe3 nanowires
,”
Phys. Chem. Chem. Phys.
22
,
21131
(
2020
).
28.
L.
Yang
,
Y.
Tao
,
J.
Liu
,
C.
Liu
,
Q.
Zhang
,
M.
Akter
,
Y.
Zhao
,
T. T.
Xu
,
Y.
Xu
,
Z.
Mao
,
Y.
Chen
, and
D.
Li
, “
Distinct signatures of electron-phonon coupling observed in the lattice thermal conductivity of NbSe3 nanowires
,”
Nano Lett.
19
,
415
(
2019
).
29.
Q.
Zhang
,
C.
Liu
,
X.
Liu
,
J.
Liu
,
Z.
Cui
,
Y.
Zhang
,
L.
Yang
,
Y.
Zhao
,
T. T.
Xu
,
Y.
Chen
,
J.
Wei
,
Z.
Mao
, and
D.
Li
, “
Thermal transport in quasi-1d van der Waals crystal Ta2Pd3Se8 nanowires: Size and length dependence
,”
ACS Nano
12
,
2634
(
2018
).
30.
H.
Liu
,
C.
Yang
,
B.
Wei
,
L.
Jin
,
A.
Alatas
,
A.
Said
,
S.
Tongay
,
F.
Yang
,
A.
Javey
,
J.
Hong
, and
J.
Wu
, “
Anomalously suppressed thermal conduction by electron-phonon coupling in charge-density-wave tantalum disulfide
,”
Adv. Sci.
7
,
1902071
(
2020
).
31.
S.
Sett
,
V. K.
Aggarwal
,
A.
Singha
, and
A. K.
Raychaudhuri
, “
Temperature-dependent thermal conductivity of a single germanium nanowire measured by optothermal Raman spectroscopy
,”
Phys. Rev. Appl.
13
,
054008
(
2020
).
32.
F.
Zhou
,
A. L.
Moore
,
J.
Bolinsson
,
A.
Persson
,
L.
Fröberg
,
M. T.
Pettes
,
H.
Kong
,
L.
Rabenberg
,
P.
Caroff
,
D. A.
Stewart
,
N.
Mingo
,
K. A.
Dick
,
L.
Samuelson
,
H.
Linke
, and
L.
Shi
, “
Thermal conductivity of indium arsenide nanowires with wurtzite and zinc blende phases
,”
Phys. Rev. B
83
,
205416
(
2011
).
33.
L.
Yang
,
M. P.
Gordon
,
A. K.
Menon
,
A.
Bruefach
,
K.
Haas
,
M. C.
Scott
,
R. S.
Prasher
, and
J. J.
Urban
, “
Decoupling electron and phonon transport in single-nanowire hybrid materials for high-performance thermoelectrics
,”
Sci. Adv.
7
,
eabe6000
(
2021
).
34.
A. I.
Krivchikov
, and
O. A.
Korolyuk
, “
Empirical universal approach to describing the thermal conductivity of amorphous polymers: Effects of pressure, radiation and the Meyer-Neldel rule
,”
Fiz. Nizk. Temp.
50
,
356
(
2024
) [
Low Temp. Phys.
50, 328 (2024)].
35.
A.
Krivchikov
,
O.
Andersson
,
O.
Korolyuk
, and
O.
Kryvchikov
, “
Thermal conductivity of solid triphenyl phosphite
,”
Molecules
27
,
8399
(
2022
).
36.
A. I.
Krivchikov
,
A.
Jeżowski
,
V. A.
Konstantinov
,
V. V.
Sagan
,
O. A.
Korolyuk
, and
D.
Szewczyk
, “
Enhancing thermal transport in ABS polymer with graphene oxide: Insights into low-temperature thermal conductivity behavior and correlation with boson peak anomaly
,”
Thermochim. Acta
733
,
179696
(
2024
).
You do not currently have access to this content.