The evolution of the temperature dependence of the pseudogap Δ*(T) in optimally doped (OD) YBa2Cu3O7–δ (YBCO) films with the superconducting critical temperature Tc = 88.7 K under the influence of a magnetic field B has been studied in detail. It has been established that the shape of Δ*(T) for various B over the entire range from the pseudogap opening temperature T* to T01, below which superconducting fluctuations occur, has a wide maximum at the BEC-BCS crossover temperature Tpair, which is typical for OD films and untwinned YBCO single crystals. T* was shown to be independent on B, whereas Tpair shifts to the low-temperature region along with the increase in B, while the maximum value of Δ*(Tpair) remains practically constant regardless of B. It was revealed that as the field increases, the low-temperature maximum near the 3D-2D transition temperature T0 is blurred and disappears at B > 5 T. Moreover, above the Ginzburg temperature TG, which limits superconducting fluctuations from below, for B > 0.5 T, a minimum appears on Δ*(T) at Tmin, which becomes very pronounced with a further increase in B. As a result, the overall value of Δ*(T) decreases noticeably most likely due to the pair-breaking effect. A comparison of Δ*(T) near Tc with the Peters–Bauer theory shows that the density of fluctuating Cooper pairs actually decreases from ⟨nn⟩ ≈ 0.31 at B = 0 to ⟨nn⟩ ≈ 0.28 in the field of 8 T. The observed behavior of Δ*(T) around Tmin is assumed to be due to the influence of a two-dimensional vortex lattice created by the magnetic field, which prevents the formation of fluctuating Cooper pairs near Tc.

1.
S.
Lee
,
J.-H.
Kim
, and
Y.-W.
Kwon
, arXiv:2307.12008 (
2023
). https://doi.org/10.48550/arXiv.2307.12008.
3.
P.
Puphal
,
M. Y. P.
Akbar
,
M.
Hepting
,
E.
Goering
,
M.
Isobe
,
A. A.
Nugroho
, and
B.
Keimer
, arXiv:2308.06256 (
2023
).
4.
A. A.
Kordyuk
,
Fiz. Nizk. Temp.
41
,
417
(
2015
) [
Low Temp. Phys.
41, 319 (2015)].
5.
J.
Gao
,
J. W.
Park
,
K.
Kim
,
S. K.
Song
,
H. R.
Park
,
J.
Lee
,
J.
Park
,
F.
Chen
,
X.
Luo
,
Y.
Sun
, and
H. W.
Yeom
,
Nano Lett.
20
,
6299
(
2020
).
6.
J. L.
Tallon
,
J. G.
Storey
,
J. R.
Cooper
, and
J. W.
Loram
,
Phys. Rev. B
101
,
174512
(
2020
).
7.
Y. Y.
Peng
,
R.
Fumagalli
,
Y.
Ding
,
M.
Minola
,
S.
Caprara
,
D.
Betto
,
M.
Bluschke
,
G. M.
De Luca
,
K.
Kummer
,
E.
Lefrançis
,
M.
Salluzzo
,
H.
Suzuki
,
M.
Le Tacon
,
X. J.
Zhou
,
N. B.
Brookes
,
B.
Keimer
,
L.
Braicovich
,
M.
Grilli
, and
G.
Ghiringhelli
,
Nat. Mater.
17
,
697
(
2018
).
8.
D.
Chakraborty
,
M.
Grandadam
,
M. Y.
Hamidian
,
J. C. S.
Davis
,
Y.
Sidis
, and
C.
Pépin
,
Phys. Rev. B
100
,
224511
(
2019
).
9.
I.
Esterlis
,
S. A.
Kivelson
, and
D. J.
Scalapino
,
Phys. Rev. B
99
,
174516
(
2019
).
10.
G.
Yu
,
D.-D.
Xia
,
D.
Pelc
,
R.-H.
He
,
N.-H.
Kaneko
,
T.
Sasagawa
,
Y.
Li
,
X.
Zhao
,
N.
Barisic
,
A.
Shekhter
, and
M.
Greven
,
Phys. Rev. B
99
,
214502
(
2019
).
11.
V. M.
Loktev
,
R. M.
Quick
, and
S. G.
Sharapov
,
Phys. Rep.
349
,
1
(
2001
).
12.
A. L.
Solovjov
,
Pseudogap and Local Pairs in High-Tc Superconductors, in: Superconductors–Materials, Properties and Applications
, edited by
A.
Gabovich
(
InTech
,
Rijeka
,
2012
), Chap. 7, p. 137.
13.
14.
O.
Tchernyshyov
,
Phys. Rev. B
56
,
3372
(
1997
).
15.
J. R.
Engelbrecht
,
A.
Nazarenko
,
M.
Randeria
, and
E.
Dagotto
,
Phys. Rev. B
57
,
13406
(
1998
).
16.
V. J.
Emery
and
S. A.
Kivelson
,
Nature
374
,
434
(
1995
).
17.
18.
A. L.
Solovjov
and
K.
Rogacki
,
Fiz. Nizk. Temp.
49
,
375
(
2023
) [
Low Temp. Phys.
49, 345 (2023)].
19.
A. L.
Solovjov
and
V. M.
Dmitriev
,
Fiz. Nizk. Temp.
35
,
227
(
2009
) [
Low Temp. Phys.
35, 169 (2009)].
20.
B. P.
Stojkoviс
and
D.
Pines
,
Phys. Rev. B
55
,
8576
(
1997
).
21.
S.
Badoux
et al,
Nature (London)
531
,
210
(
2016
).
22.
A. M.
Gabovich
and
A. I.
Voitenko
,
Fiz. Nizk. Temp.
42
,
1103
(
2016
) [
Low Temp. Phys.
42, 863 (2016)].
23.
L.
Taillefer
,
Annu. Rev. Condens. Matter Phys.
1
,
51
(
2010
).
24.
S.
Dzhumanov
and
U. T.
Kurbanov
,
Mod. Phys. Lett. B
32
,
1850312
(
2018
).
25.
S.
Dzhumanov
and
U. T.
Kurbanov
,
Superlattices Microstruct.
84
,
66
(
2015
).
26.
S.
Wang
,
P.
Choubey
,
Y. X.
Chong
,
W.
Chen
,
W.
Ren
,
H.
Eisaki
,
S.
Uchida
,
P. J.
Hirschfeld
, and
J. C. S.
Davis
,
Nature Com.
12
,
6087
(
2021
).
27.
S. F.
Kivelson
and
S.
Lederer
,
Proc. Natl. Acad. Sci.
116
,
14395
(
2019
).
28.
N. J.
Robinson
,
P. D.
Johnson
,
T. M.
Rice
, and
A. M.
Tsvelik
,
Rep. Prog. Phys.
82
,
126501
(
2019
).
29.
V.
Mishra
,
U.
Chatterjee
,
J. C.
Campuzano
, and
M. R.
Norman
,
Nat. Phys.
10
,
357
(
2014
).
30.
R. V.
Vovk
and
Z. F.
Nazyrov
,
G. Ya.
Khadzhai
,
V. M. Pno
Simoes
, and
V. V.
Kruglyak
,
Funct. Mater.
20
,
208
(
2013
).
31.
B. A.
Malik
,
G. H.
Rather
,
K.
Asokan
, and
M. A.
Malik
,
Appl. Phys. A
127
,
1
(
2021
).
32.
R. I.
Rey
,
C.
Carballeira
,
J. M.
Doval
,
J.
Mosqueira
,
M. V.
Ramallo
,
A.
Ramos-Álvarez
,
D.
Sóñora
,
J. A.
Veira
,
J. C.
Verde
, and
F.
Vidal
,
Supercond. Sci. Technol.
32
,
045009
(
2019
).
33.
E. V.
Petrenko
,
L. V.
Omelchenko
,
Yu. A.
Kolesnichenko
,
N. V.
Shytov
,
K.
Rogacki
,
D. M.
Sergeyev
, and
A. L.
Solovjov
,
Fiz. Nizk. Temp.
47
,
1148
(
2021
) [Low Temp. Phys. 47, 1050 (2021)].
34.
P. G.
De Gennes
,
Superconductivity of Metals and Alloys
(
W. A.
Benjamin
, Inc.,
New York
,
Amsterdam
,
1968
), p. 280.
35.
A. L.
Solovjov
,
L. V.
Omelchenko
,
R. V.
Vovk
,
O. V.
Dobrovolskiy
,
S. N.
Kamchatnaya
, and
D. M.
Sergeev
,
Curr. Appl. Phys.
16
,
931
(
2016
).
36.
L. G.
Aslamazov
and
A. L.
Larkin
,
Phys. Lett. A
26
,
238
(
1968
).
37.
S.
Hikami
and
A. I.
Larkin
,
Mod. Phys. Lett. B
2
,
693
(
1988
).
38.
A. L.
Solovjov
,
E. V.
Petrenko
,
L. V.
Omelchenko
,
R. V.
Vovk
,
I. L.
Goulatis
, and
A.
Chroneos
,
Sci. Rep.
9
,
9274
(
2019
).
39.
R.
Peters
and
J.
Bauer
,
Phys. Rev. B
92
,
014511
(
2015
).
40.
P.
Przyslupski
,
I.
Komissarov
,
W.
Paszkowicz
,
P.
Dluzewski
,
R.
Minikayev
, and
M.
Sawicki
,
J. Appl. Phys.
95
,
2906
(
2004
).
41.
E. V. L.
de Mello
,
M. T. D.
Orlando
,
J. L.
Gonzalez
,
E. S.
Caixeiro
, and
E.
Baggio-Saitovich
,
Phys. Rev. B
66
,
092504
(
2002
).
42.
A. L.
Solovjov
,
H.-U.
Habermeier
, and
T.
Haage
,
Fiz. Nizk. Temp.
28
,
144
(
2002
) [
Low Temp. Phys.
28, 99 (2002)].
43.
B.
Oh
,
K.
Char
,
A. D.
Kent
,
M.
Naito
,
M. R.
Beasley
,
T. H.
Geballe
,
R. H.
Hammond
,
A.
Kapitulnik
, and
J. M.
Graybeal
,
Phys. Rev. B
37
,
7861
(
1988
).
44.
E.
Nazarova
,
A.
Zaleski
, and
K.
Buchkov
,
Physica C
470
,
421
(
2010
).
45.
Y. V.
Pustovit
and
A. A.
Kordyuk
,
Fiz. Nizk. Temp.
42
,
1268
(
2016
) [
Low Temp. Phys.
42, 995 (2016)].
46.
W.
Lang
,
G.
Heine
,
P.
Schwab
,
X. Z.
Wang
, and
D.
Bauerle
,
Phys. Rev. B
49
,
4209
(
1994
).
47.
A. L.
Solovjov
,
L. V.
Omelchenko
,
R. V.
Vovk
,
O. V.
Dobrovolskiy
,
Z. F.
Nazyrov
,
S. N.
Kamchatnaya
, and
D. M.
Sergeyev
,
Physica B
493
,
58
(
2016
).
48.
Y.
Ando
,
S.
Komiya
,
K.
Segawa
,
S.
Ono
, and
Y.
Kurita
,
Phys. Rev. Lett.
93
,
267001
(
2004
).
49.
A. L.
Solovjov
and
V. M.
Dmitriev
,
Fiz. Nizk. Temp.
32
,
139
(
2006
) [
Low Temp. Phys.
32, 99 (2006)].
50.
A. L.
Solovjov
,
L. V.
Omelchenko
,
V. B.
Stepanov
,
R. V.
Vovk
,
H.-U.
Habermeier
,
H.
Lochmajer
,
P.
Przyslupski
, and
K.
Rogacki
,
Phys. Rev. B
94
,
224505
(
2016
).
51.
V. L.
Ginzburg
and
L. D.
Landau
, “
On the theory of superconductivity
,” in
On Superconductivity and Superfluidity
(
Springer
,
Berlin–Heidelberg
,
2009
).
52.
E. M.
Lifshitz
and
L. P.
Pitaevski
,
Statistical Physics
(
Nauka
,
Moscow
,
1978
).
53.
A.
Kapitulnik
,
M. R.
Beasley
,
C.
Castellani
, and
C.
Di Castro
,
Phys. Rev. B
37
,
537
(
1988
).
54.
T.
Schneider
and
J. M.
Singer
,
Phase Transition Approach to High-Temperature Superconductivity: Universal Properties of Cuprate Superconductors
(
Imperial College Press
,
London
,
2000
).
55.
P.
Pieri
,
G. C.
Strinati
, and
D.
Moroni
,
Phys. Rev. Lett.
89
,
127003
(
2002
).
56.
T.
Shibauchi
,
L.
Krusin-Elbaum
,
M.
Li
,
M. P.
Maley
, and
P. H.
Kes
,
Phys. Rev. Lett.
86
,
5763
(
2001
).
57.
B.
Leridon
,
A.
Defossez
,
J.
Dumont
,
J.
Lesueur
, and
J. P.
Contour
,
Phys. Rev. Lett.
87
,
197007
(
2001
).
58.
Y.
Yamada
,
K.
Anagawa
,
T.
Shibauchi
,
T.
Fujii
,
T.
Watanabe
,
A.
Matsuda
, and
M.
Suzuki
,
Phys. Rev. B
68
,
054533
(
2003
).
59.
J.
Stajic
,
A.
Iyengar
,
K.
Levin
,
B. R.
Boyce
, and
T. R.
Lemberger
,
Phys. Rev. B
68
,
024520
(
2003
).
60.
D. S.
Inosov
,
J. T.
Park
,
A.
Charnukha
,
Y.
Li
,
A. V.
Boris
,
B.
Keimer
, and
V.
Hinkov
,
Phys. Rev. B
83
,
214520
(
2011
).
61.
Ø
Fischer
,
M.
Kugler
,
I.
Maggio-Aprile
, and
C.
Berthod
,
Rev. Mod. Phys.
79
,
353
(
2007
).
62.
A. I.
D’yachenko
,
V. Y.
Tarenkov
,
V. V.
Kononenko
, and
E. M.
Rudenko
,
Metallofiz. Noveishie Tekhnol.
38
,
565
(
2016
).
63.
Y.
Matsuda
,
T.
Hirai
,
S.
Komiyama
,
T.
Terashima
,
Y.
Bando
,
K.
Iijima
,
K.
Yamamoto
, and
K.
Hirata
,
Phys. Rev. B
40
,
5176
(
1989
).
64.
H.
Alloul
,
F.
Rullier-Albenque
,
B.
Vignolle
,
D.
Colson
, and
A.
Forget
,
EPL
91
,
37005
(
2010
).
65.
T.
Kondo
,
A. D.
Palczewski
,
Y.
Hamaya
,
T.
Takeuchi
,
J. S.
Wen
,
Z. J.
Xu
,
G.
Gu
, and
A.
Kaminski
,
Phys. Rev. Lett.
111
,
157003
(
2013
).
66.
A. L.
Solovjov
,
E. V.
Petrenko
,
L. V.
Omelchenko
,
E.
Nazarova
,
K.
Buchkov
, and
K.
Rogacki
,
Fiz. Nizk. Temp.
46
,
638
(
2020
) [
Low Temp. Phys.
46, 538 (2020)].
67.
A. L.
Solovjov
,
L. V.
Omelchenko
,
E. V.
Petrenko
,
Yu. A.
Kolesnichenko
,
A. S.
Kolesnik
,
S.
Dzhumanov
, and
R. V.
Vovk
,
Fiz. Nizk. Temp.
49
,
115
(
2023
) [
Low Temp. Phys.
49, 108 (2023)].
You do not currently have access to this content.