Natural polyamines play a fundamental role in the cell cycle. Despite being recognized as the most abundant organic counterions of DNA in the cell nucleus, their interactions with DNA have not been fully characterized. In a recent work [S. Perepelytsya, T. Vasiliu, A. Laaksonen, L. Engelbrecht, G. Brancato, and F. Mocci, J. Molec. Liq. 389, 122828 (2023)], we have shown how the interactions between spermidine3+ and the DNA double helix induce significant conformational variations in the polyamine molecule. Specifically, we found that DNA induces conformations that are not observed in solution. Following that study, we present here a detailed investigation of the most compact conformation of the polyamine, analyzing its connection to the interaction with the DNA duplex. The analysis reveals that anomalous bent conformations of the spermidine3+ molecule result from the interaction of all three amino groups of the polyamine with the DNA phosphate groups on the minor groove side of the double helix. The changes in dihedral angles of the bent spermidine3+ molecule can be explained in terms of conformational transformations of six- and seven-membered rings, analogous to cyclohexane and cycloheptane. The analysis of the position of spermidine3+ molecule along the DNA surface reveals a sequence specificity of this binding mode with a marked preference for the narrow minor groove of A-tracts. The formation of the anomalous bent conformations of spermidine3+ in the complex with the DNA double helix is expected to be of paramount importance in understanding the mechanisms underlying DNA’s biological function.

1.
A. E.
Pegg
, “
Toxicity of polyamines and their metabolic products
,”
Chem. Res. Toxicol.
26
,
1782
(
2013
).
2.
Leah
Bichowsky-Slomnitzki
, The effect of aromatic diamidines on bacterial growth II. The Antaconims of Nuclic Acids and Polyamines.
3.
M.
Suwalsky
,
W.
Traub
,
U.
Shmueli
, and
J. A.
Subirana
, “
An X-ray study of the interaction of DNA with spermine
J. Molec. Biol.
42
,
365
(
1969
).
4.
Herbert
Tabor
, “
The protective effect of spermine and other polyamines against heat denaturation of deoxyribonucleic acid
,
Biochemistry
1
, No.
3
,
496
(
1962
).
5.
Nikolay
Korolev
,
Alexander P.
Lyubartsev
,
Lars
Nordenskiöld
, and
Aatto
Laaksonen
, “
Spermine: An “invisible” component in the crystals of B-DNA. A grand canonical monte carlo and molecular dynamics simulation study
.
J. Molec. Biol.
308
,
907
(
2001
).
6.
N.
Korolev
,
A. P.
Lyubartsev
,
A.
Laaksonen
, and
L.
Nordenskiöld
, “
On the competition between water, sodium ions, and spermine in binding to DNA: A molecular dynamics computer simulation study
,”
Biophys. J.
82
,
2860
(
2002
).
7.
N.
Korolev
,
A. P.
Lyubartsev
,
A.
Laaksonen
, and
L.
Nordenskiöld
, “
A molecular dynamics simulation study of oriented DNA with polyamine and sodium counterions: Diffusion and averaged binding of water and cations
,”
Nucl. Acids Res.
31
,
5971
(
2003
).
8.
N.
Korolev
,
A. P.
Lyubartsev
,
A.
Laaksonen
, and
L.
Nordenskiöld
, “
Molecular dynamics simulation study of oriented polyamine- and Na-DNA: Sequence specific interactions and effects on DNA structure
,”
Biopolymers
73
,
542
(
2004
).
9.
N.
Korolev
,
A. P.
Lyubartsev
,
A.
Laaksonen
, and
L.
Nordenskiöld
, “
A molecular dynamics simulation study of polyamine- and sodium-DNA. interplay between polyamine binding and DNA structure
,”
Eur. Biophys. J.
33
,
671
(
2004
).
10.
H.
Kang
,
J.
Yoo
,
B. K.
Sohn
,
S. W.
Lee
,
H. S.
Lee
,
W.
Ma
,
J. M.
Kee
,
A.
Aksimentiev
, and
H.
Kim
, “
Sequence-dependent DNA condensation as a driving force of DNA phase separation
,”
Nucl. Acids Res.
46
,
9401
(
2018
).
11.
S.
Perepelytsya
,
J.
Uličný
,
A.
Laaksonen
, and
F.
Mocci
, “
Pattern preferences of DNA nucleotide motifs by polyamines putrescine2+, spermidine3+, and spermine4+
,”
Nucleic Acids Research
47
,
6084
(
2019
).
12.
F.
Mocci
,
A.
Laaksonen
,
L.
Engelbrecht
,
T.
Vasiliu
, and
S.
Perepelytsya
, “
NA-Polyamine Interactions: Insight from molecular dynamics simulations on the sequence-specific binding of Spermidine3+
,” in:
Soft Matter Systems for Biomedical Applications
(
Springer Proceedings in Physics
,
Springer, Cham
.,
2022
), Vol.
266
, p.
163
.
13.
Tudor
Vasiliu
,
Francesca
Mocci
,
Aatto
Laaksonen
,
Leon
De Villiers Engelbrecht
, and
S. M.
Perepelytsya
, “
Caging polycations: Effect of increasing con fi nement on the modes of interaction of spermidine3+ with dna double helices
,”
Front. Chem.
10
,
836994
(
2022
).
14.
Alexei A.
Kornyshev
,
Dominic J.
Lee
,
Sergey
Leikin
, and
Aaron
Wynveen
, “
Structure and interactions of biological helices,
Rev. Mod. Phys.
79
,
943
(
2007
).
15.
Yan
Levin
, “
Electrostatic correlations: From plasma to biology,
Rep. Prog. Phys.
65
,
1577
(
2002
).
16.
G. S.
Manning
, “
The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides
,”
Quart. Rev. Biophys.
11
,
179
(
1978
).
17.
Fumio
Oosawa
,
Polyelectrolytes
(
Marcel Dekker. Inc.
,
1971
).
18.
F.
Oosawa
, “
Counterion fluctuation and dielectric dispersion in linear polyelectrolytes
,”
Biopolymers
9
,
677
(
1970
).
19.
John S.
McCaskill
and
Edward D.
Fackerell
, “
Painlevé solution of the poisson-boltzmann equation for a cylindrical polyelectrolyte in excess salt solution
,”
J. Chem. Soc., Faraday Trans.
84
, No.
2
,
161
(
1988
).
20.
Ben
O’Shaughnessy
and
Qingbo
Yang
, “
Manning-Oosawa counterion condensation
,”
Phys. Rev. Lett.
94
,
048302
(
2005
).
21.
G. S.
Manning
, “
The contribution of transient counterion imbalances to DNA bending fluctuations
,”
Biophys. J.
90
,
3208
(
2006
).
22.
E.
Trizac
, and
G.
Téllez
, “
Onsager-manning-oosawa condensation phenomenon and the effect of salt
,”
Phys. Rev. Lett.
96
,
1
(
2006
).
23.
S.
Perepelytsya
, and
O.
Zdorevskyi
, “
Counterion atmosphere around DNA double helix: Trapping of counterions at the nanoscale
,”
Fiz. Nizk. Temp.
48
,
331
(
2022
) [
Low Temp. Phys.
48, 293 (2022)].
24.
K.
Andresen
,
X.
Qiu
,
S. A.
Pabit
,
J. S.
Lamb
,
Y. P.
Hye
,
L. W.
Kwok
, and
L.
Pollack
, “
Mono- and trivalent ions around DNA: A small-angle scattering study of competition and interactions
,”
Biophys. J.
95
,
287
(
2008
).
25.
R.
Das
,
T. T.
Mills
,
L. W.
Kwok
,
G. S.
Maskel
,
I. S.
Millett
,
S.
Doniach
,
K. D.
Finkelstein
,
D.
Herschlag
, and
L.
Pollack
, “
Counterion distribution around DNA probed by solution X-ray scattering
,”
Phys. Rev. Lett.
90
,
188103
(
2003
).
26.
M. A.
Young
,
B.
Jayaram
, and
D. L.
Beveridge
, “
Intrusion of counterions into the spine of hydration in the minor groove of B-DNA: Fractional occupancy of electronegative pockets
,”
J. Amer. Chem. Soc.
119
,
59
(
1997
).
27.
A. P.
Lyubartsev
, and
A.
Laaksonen
, “
Molecular dynamics simulations of dna in solution with different counter-ions
,”
J. Biomol. Struct. Dynam.
16
,
579
(
1998
).
28.
K. J.
McConnell
and
D. L.
Beveridge
, “
DNA structure: What’s in charge?,
J. Molec. Biol.
304
,
803
(
2000
).
29.
F.
Mocci
, and
G.
Saba
, “
Molecular dynamics simulations of A ⋅ T-rich oligomers: Sequence-specific binding of Na+ in the minor groove of B-DNA
,”
Biopolymers
68
,
471
(
2003
).
30.
Sergei Y.
Ponornarev
,
Kelly M.
Thayer
, and
David L.
Beveridge
, “
Ion motions in molecular dynamics simulations on DNA
,”
Proc. Natl. Acad. Sci. USA
101
,
14771
(
2004
).
31.
D. L.
Beveridge
,
S. B.
Dixit
, and
G.
Barreiro
, and
Kelly M.
Thayer
,
Molecular dynamics simulations of DNA curvature and flexibility: Helix phasing and premelting
,”
Biopolymers
73
,
380
(
2004
).
32.
P.
Várnai
, and
K.
Zakrzewska
, “
DNA and its counterions: A molecular dynamics study
,”
Nucl. Acids. Res.
32
,
4269
(
2004
).
33.
F.
Mocci
, and
A.
Laaksonen
, “
Insight into nucleic acid counterion interactions from inside molecular dynamics simulations is “worth its salt”
,”
Soft Matter
8
,
9268
(
2012
).
34.
Jejoong
Yoo
and
Aleksei
Aksimentiev
, “
Improved parametrization of Li+, Na+, K+, and Mg2+ ions for all-atom molecular dynamics simulations of nucleic acid systems
,”
J. Phys. Chem. Lett.
3
,
45
(
2012
).
35.
R.
Lavery
,
J. H.
Maddocks
,
M.
Pasi
, and
K.
Zakrzewska
, “
Analyzing ion distributions around DNA
,”
Nucl. Acids Res.
42
,
8138
(
2014
).
36.
O. O.
Liubysh
,
A. V.
Vlasiuk
, and
S. M.
Perepelytsya
, “
Structurization of counterions around DNA double helix: A molecular dynamics study
,”
Ukr. J. Phys.
60
,
433
(
2015
).
37.
A.
Atzori
,
S.
Liggi
,
A.
Laaksonen
,
M.
Porcu
,
A. P.
Lyubartsev
,
G.
Saba
, and
F.
Mocci
, “
Base sequence specificity of counterion binding to DNA: What can MD simulations tell US?
,”
Canad. J. Chem.
94
,
1181
(
2016
).
38.
P. D.
Dans
,
L.
Danilane
,
I.
Ivani
,
T.
Dršata
,
F.
Lankaš
,
A.
Hospital
,
J.
Walther
,
R. I.
Pujagut
,
F.
Battistini
,
J. L.
Gelpí
,
R.
Lavery
, and
M.
Orozco
, “
Long-timescale dynamics of the drew-dickerson dodecamer
,”
Nucl. Acids Res.
44
,
4052
(
2016
).
39.
S.
Perepelytsya
, “
Hydration of counterions interacting with DNA double helix: A molecular dynamics study
,”
J. Mol. Model.
24
(
7
),
171
(
2018
).
40.
J.
Xue
,
X.
Li
,
R.
Tan
, and
W.
Zong
, “
Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
,”
Chin. Phys. B
31
,
048702
(
2022
).
41.
S. M.
Perepelytsya
, “
Positively and negatively hydrated counterions in molecular dynamics simulations of DNA double helix
,”
Ukr. J. Phys.
65
,
510
(
2020
).
42.
O. O.
Zdorevskyi
, and
S. M.
Perepelytsya
, “
Dynamics of K+ counterions around DNA double helix in the external electric field: A molecular dynamics study
,”
Eur. Phys. J. E
43
(
12
),
77
(
2020
).
43.
A.
Kabir
, and
G.
Suresh Kumar
, “
Binding of the biogenic, polyamines to deoxyribonucleic acids of varying base composition: Base specificity and the associated energetics of the interaction
,”
PLOS ONE
8
,
e70510
(
2013
).
44.
V. A.
Bloomfield
, “
DNA condensation by multivalent cations
,”
Biopolymers
44
,
269
(
1997
).
45.
Sergiy
Perepelytsya
,
Tudor
Vasiliu
,
Aatto
Laaksonen
,
Leon
Engelbrecht
,
Guiseppe
Brancato
, and
Francesca
Mocci
, “
Conformational flexibility of spermidine3+ interacting with DNA double helix
,”
J. Molec. Liq.
389
,
122828
(
2023
).
46.
Marcus D.
Hanwell
,
Donald E.
Curtis
,
David C.
Lonie
,
Tim
Vandermeersch
,
Eva
Zurek
, and
Geoffrey R.
Hutchison
,
Avogadro: An advanced semantic chemical editor, visualization, and analysis platform
,”
J. Cheminform.
4
, Article number
17
(
2012
).
47.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
I. Y.
Ben-Shalom
,
J. T.
Berryman
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
,
III
,
G
.
A.
Cisneros
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
R. E.
Duke
,
G.
Giambasu
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
R.
Harris
,
S.
Izadi
,
S. A.
Izmailov
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
A.
Kovalenko
,
T.
Kurtzman
,
T. S.
Lee
,
S.
LeGrand
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Machado
,
V.
Man
,
M.
Manathunga
,
K. M.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
K. A.
O’Hearn
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Shen
,
C. L.
Simmerling
,
N. R.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
J.
Wang
,
H.
Wei
,
R. M.
Wolf
,
X.
Wu
,
Y.
Xiong
,
Y.
Xue
,
D. M.
York
,
S.
Zhao
, and
P. A.
Kollman
,
Reference Manual
, Amber 2022 (
University of California
,
San Francisco
,
2022
).
48.
D. A.
Case
,
H. M.
Aktulga
,
K.
Belfon
,
D. S.
Cerutti
, and
G.
Andrés Cisneros
,
Vinícius
Wilian D
.
Cruzeiro
,
Negin Forouzesh
,
Timothy J.
Giese
,
Andreas W.
Götz
,
Holger
Gohlke
,
Saeed
Izadi
,
Koushik
Kasavajhala
,
Mehmet C.
Kaymak
,
Edward
King
,
Tom
Kurtzman
,
Tai Sung
Lee
,
Pengfei
Li
,
Jian
Liu
,
Tyler
Luchko
,
Ray
Luo
,
Madushanka
Manathunga
,
Matias R.
Machado
,
Hai Minh
Nguyen
,
Kurt A.
O’Hearn
,
Alexey V.
Onufriev
,
Feng
Pan
,
Sergio
Pantano
,
Ruxi
Qi
,
Ali
Rahnamoun
,
Ali
Risheh
,
Stephan
Schott-Verdugo
,
Akhil
Shajan
,
Jason
Swails
,
Junmei
Wang
,
Haixin
Wei
,
Xiongwu
Wu
,
Yongxian
Wu
,
Shi
Zhang
,
Shiji
Zhao
,
Qiang
Zhu
,
Thomas E.
Cheatham
,
Daniel R.
Roe
,
Adrian
Roitberg
,
Carlos
Simmerling
,
Darrin M.
York
,
Maria C.
Nagan
, and
Kenneth M.
Merz
,
Ambertools
,”
J. Chem. Inf. Model.
63
,
6183
(
2023
).
49.
K.
Belfon
,
I. Y.
Ben-Shalom
,
J. T.
Berryman
,
S. R.
Brozell
,
D. S.
Cerutti
,
T. E.
Cheatham
III
,
G. A.
Cisneros
,
V. W. D.
Cruzeiro
,
T. A.
Darden
,
N.
Forouzesh
,
G.
Giambaşu
,
T.
Giese
,
M. K.
Gilson
,
H.
Gohlke
,
A. W.
Goetz
,
J.
Harris
,
S.
Izadi
,
S. A.
Izmailov
,
K.
Kasavajhala
,
M. C.
Kaymak
,
E.
King
,
A.
Kovalenko
,
T.
Kurtzman
,
T. S.
Lee
,
P.
Li
,
C.
Lin
,
J.
Liu
,
T.
Luchko
,
R.
Luo
,
M.
Machado
,
V.
Man
,
M.
Manathunga
,
K. M.
Merz
,
Y.
Miao
,
O.
Mikhailovskii
,
G.
Monard
,
H.
Nguyen
,
K. A.
O’Hearn
,
A.
Onufriev
,
F.
Pan
,
S.
Pantano
,
R.
Qi
,
A.
Rahnamoun
,
D. R.
Roe
,
A.
Roitberg
,
C.
Sagui
,
S.
Schott-Verdugo
,
A.
Shajan
,
J.
Shen
,
C. L.
Simmerling
,
N. R.
Skrynnikov
,
J.
Smith
,
J.
Swails
,
R. C.
Walker
,
J.
Wang
,
J.
Wang
,
H.
Wei
,
X.
Wu
,
Y.
Wu
,
Y.
Xiong
,
Y.
Xue
,
D. M.
York
,
S.
Zhao
,
Q.
Zhu
,
D. A.
Case
,
H. M.
Aktulga
, and
P. A.
Kollman
,
Amber 2023
(
University of California
,
San Francisco
,
2023
).
50.
Ivan
Ivani
,
Pablo D.
Dans
,
Agnes
Noy
,
Alberto
Pérez
,
Ignacio
Faustino
,
Adam
Hospital
,
Jürgen
Walther
,
Pau
Andrio
,
Ramon
Goñi
,
Alexandra
Balaceanu
,
Guillem
Portella
,
Federica
Battistini
,
Josep Lluis
Gelpí
,
Carlos
González
,
Michele
Vendruscolo
,
Charles A.
Laughton
,
Sarah A.
Harris
,
David A.
Case
, and
Modesto
Orozco
, “
Parmbsc1: A refined force field for DNA simulations
,”
Nature Meth.
13
,
55
(
2016
).
51.
Xibing
He
,
Viet H.
Man
,
Wei
Yang
,
Tai Sung
Lee
, and
Junmei
Wang
, “
A fast and high-quality charge model for the next generation general AMBER force field,
J. Chem. Phys.
153
,
114502
(
2020
).
52.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
, and
P. A.
Kollman
, and
David A.
Case
,
Development and testing of a general amber force field
,”
J. Computat. Chem.
25
,
1157
(
2004
).
53.
William L.
Jorgensen
,
Jayaraman
Chandrasekhar
,
Jeffry D.
Madura
,
Roger W.
Impey
, and
Michael L.
Klein
,
Comparison of simple potential functions for simulating liquid water,
J. Chem. Phys.
79
,
926
(
1983
).
54.
In Suk
Joung
and
Thomas E.
Cheatham
,
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
(
2008
).
55.
Mark James
Abraham
,
Teemu
Murtola
,
Roland
Schulz
,
Szilárd
Páll
,
Jeremy C.
Smith
,
Berk
Hess
, and
Erik
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
(
2015
).
56.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
57.
S
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble,
Molec. Phys.
52
,
255
(
1984
).
58.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method,
J. Appl. Phys.
52
,
7182
(
1981
).
59.
Berk
Hess
,
Henk
Bekker
,
Herman J. C.
Berendsen
, and
Johannes G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,
J. Comput. Chem.
18
,
1463
(
1997
).
60.
Ulrich
Essmann
,
Lalith
Perera
,
Max L.
Berkowitz
,
Tom
Darden
,
Hsing
Lee
, and
Lee G.
Pedersen
,
A smooth particle mesh ewald method A smooth particle mesh ewald method,
J. Chem. Phys.
103
,
8577
(
1995
).
61.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Molec. Graph.
14
,
33
(
1996
).
62.
W.
Saenger
,
Principles of Nucleic Acid Structure
(
Springer
,
New York
,
1984
).
63.
Veljko
Dragojlovic
, “
Conformational analysis of cycloalkanes
,”
ChemTexts
1
,
14
(
2015
).
You do not currently have access to this content.