Hostilities are accompanied by extremely enhanced air pollution with particulate matter (PM) which was exactly shown in Ukraine, where increased PM2.5 (the size less than 2.5 μm) correlated with war activities [R. Zalakeviciute et al., Sustainability 14(21), 13832 (2022)]. Drastic increases in PM2.5 pollution from bombing and structural fires raise additional health concerns. Also, the widest spread of war-associated metal pollutants are copper and iron [Metal Pollutants Associated with War <https://ecopolitic.com.ua> (2023, November)] which are neurotoxic [B. Tarnacka et al., Int. J. Mol. Sci. 22(15), 7820 (2021)]. Calculations have revealed that Ukrainian regions are highly contaminated with copper and iron that in turn become bioavailable. Neurological disorders are the most common cause of disability/death and their increase is linked to air pollution with PM, which targets the nervous system triggering the development of neuropathology as shown in the epidemiological data of the Lancet Commission [P. J. Landrigan et al., Lancet 391, 462 (2018)]. Airborne PM can travel across state boundaries, oceans, and continents, and so disperses globally causing hazards to human health not only in Ukraine but also worldwide. Our hypothesis [T. Borisova, N. Krisanova, O. Gnatiuk, V. Boyko, and G. Dovbeshko, Project “War-derived air pollution nanohybrids composed of carbon-containing smoke nanoparticles and metal compounds: FTIR/Raman spectroscopic, fluorescent and membrane-active properties, their potential neurotoxicity and its prevention”, PAN.BFB.S.BWZ.380.022.2023] is that the neurotoxic potential of abandoned war-associated carbonaceous smoke nanoparticles can be significantly enhanced by copper and iron compounds during their combined release to the environment during bombing and fires. Moreover, they can form nanohybrids during interaction in the environment. This hypothesis is based on our recent experimental data regarding neurotoxic features of smoke PM from wood and plastics and their capability to interact with other pollutants [A. Borysov et al., Environ. Pollut. 263, 114502 (2020), A. Pastukhov et al., Sci. Rep. 13, 17771 (2023), T. Borisova, Environmental Nanoparticles: Focus on Multipollutant Strategy for Environmental Quality and Health Risk Estimations, Chapter in: Biomedical Nanomaterials, R. S. Stoika (ed.) (2021), pp. 305–321, T. Borisova and S. Komisarenko Environ Sci. Pollut. Res. 28(30), 40371 (2021)]. It is an urgent necessity to analyze the molecular structure and membrane-active properties of war-derived polluted nanohybrids composed of carbonaceous smoke nanoparticles, copper, and iron; to assess their potential neurotoxicity and to find a way of neuroprotection. Knowledge about the capability of different war-derived PM to form environmental nanohybrids with war-associated pollutant copper and iron, and their spectroscopic, fluorescent, and membrane-active features can be applicable in environmental monitoring. Potential neurotoxicity data of war-derived nanohybrids can be used for the prognosis of neurological symptoms and the development of possible ways for neuroprotection.

1.
R.
Zalakeviciute
,
D.
Mejia
,
H.
Alvarez
,
X.
Bermeo
,
S.
Bonilla-Bedoya
,
Y.
Rybarczyk
, and
B.
Lamb
, “
War impact on Air quality in Ukraine
,”
Sustainability
14
(
21
),
13832
(
2022
).
2.
Metal Pollutants Associated with War <https://ecopolitic.com.ua> (2023, November).
3.
B.
Tarnacka
,
A.
Jopowicz
, and
M.
Maślińska
, “
Copper, iron, and manganese toxicity in neuropsychiatric conditions
,”
Int. J. Mol. Sci.
22
(
15
),
7820
(
2021
).
4.
P. J.
Landrigan
,
R.
Fuller
,
N. J. R
Acosta
,
O.
Adeyi
,
R.
Arnold
,
Niladri (Nil)
Basu
,
A.
Bibi Baldé
,
R.
Bertollini
,
S.
Bose-O’Reilly
,
Jo Ivey
Boufford
,
P. N.
Breysse
,
T.
Chiles
,
C.
Mahidol
,
A. M.
Coll-Seck
,
M. L.
Cropper
,
J.
Fobil
,
V.
Fuster
,
M.
Greenstone
,
A.
Haines
,
D.
Hanrahan
,
D.
Hunter
,
M.
Khare
,
A.
Krupnick
,
B.
Lanphear
,
B.
Lohani
,
K.
Martin
,
K. V.
Mathiasen
,
M. A.
McTeer
,
C. J. L.
Murray
,
J. D.
Ndahimananjara
,
F.
Perera
,
J.
Potočnik
,
A. S.
Preker
,
J.
Ramesh
,
J.
Rockström
,
C.
Salinas
,
L. D.
Samson
,
K.
Sandilya
,
P. D.
Sly
,
Kirk R.
Smith
,
A.
Steiner
,
R. B.
Stewart
,
W. A.
Suk
,
O. C. P.
van Schayck
,
G. N.
Yadama
,
K.
Yumkella
, and
Ma
Zhong
, “
The lancet commission on pollution and health
,”
Lancet
391
,
462
(
2018
).
5.
T.
Borisova
,
N.
Krisanova
,
O.
Gnatiuk
,
V.
Boyko
, and
G.
Dovbeshko
, Project “War-derived air pollution nanohybrids composed of carbon-containing smoke nanoparticles and metal compounds: FTIR/Raman spectroscopic, fluorescent and membrane-active properties, their potential neurotoxicity and its prevention,” PAN.BFB.S.BWZ.380.022.2023.
6.
A.
Borysov
,
A.
Tarasenko
,
N.
Krisanova
,
N.
Pozdnyakova
,
A.
Pastukhov
,
M.
Dudarenko
,
K.
Paliienko
, and
T.
Borisova
, “
Plastic smoke aerosol: Nano-sized particle distribution, absorption/fluorescent properties, dysregulation of oxidative processes and synaptic transmission in rat brain nerve terminals
,”
Environ. Pollut.
263
,
114502
(
2020
).
7.
A.
Pastukhov
,
K.
Paliienko
,
N.
Pozdnyakova
,
N.
Krisanova
,
M.
Dudarenko
,
L.
Kalynovska
,
A.
Tarasenko
,
O.
Gnatyuk
,
G.
Dovbeshko
, and
T.
Borisova
, “
Disposable facemask waste combustion emits neuroactive smoke particulate matter
,”
Sci. Rep.
13
,
17771
(
2023
).
8.
T.
Borisova
,
Environmental nanoparticles: Focus on multipollutant strategy for environmental quality and health risk estimations
, Chapter in:
Biomedical Nanomaterials
, edited by,
R. S.
Stoika
(
2021
), pp.
305
321
.
9.
T.
Borisova
and
S.
Komisarenko
, “
Air pollution particulate matter as a potential carrier of SARS-CoV-2 to the nervous system and/or neurological symptom enhancer: Arguments in favor
,”
Environ Sci. Pollut. Res.
28
(
30
),
40371
(
2021
).
10.
G.
Deuschl
,
E.
Beghi
,
F.
Fazekas
,
T.
Varga
,
K. A
Christoforidi
,
E.
Sipido
,
C. L.
Bassetti
,
T.
Vos
, and
V. L.
Feigin
, “
The burden of neurological diseases in Europe: An analysis for the global burden of disease study 2017
,”
Lancet Public Heal.
5
,
e551
(
2020
).
11.
The Lancet Neurology
.
Long COVID: Understanding the neurological effects
,”
Lancet Neurol.
20
,
247
(
2021
).
12.
A.
Jarrahi
,
M.
Ahluwalia
,
H.
Khodadadi
,
E.
da Silva Lopes Salles
,
R.
Kolhe
,
D. C.
Hess
,
F.
Vale
,
M.
Kumar
,
B.
Baban
,
K.
Vaibhav
, and
K. M.
Dhandapani
, “
Neurological consequences of COVID-19 what have we learned and where do we go from here
,”
J. Neuroinflammation
17
,
1
(
2020
).
13.
T.
Borisova
, “
Nervous system injury in response to contact with environmental, engineered and planetary micro-and nano-sized particles
,”
Front. Physiol.
9
,
728
(
2018
).
14.
T.
Borisova
, “
Express assessment of neurotoxicity of particles of planetary and interstellar dust
,”
NPJ Microgravity
5
,
2
(
2019
).
15.
G.
Oberdörster
,
E.
Oberdörster
, and
J.
Oberdörster
, “
Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles
,”
Environ. Health Perspect.
7
(
113
),
823
(
2005
).
16.
T. A.
Borisova
and
N. H.
Himmelreich
, “
Centrifuge-induced hypergravity: [3H]GABA and L-[14C]glutamate uptake, exocytosis and efflux mediated by high-affinity, sodium-dependent transporters
,”
Adv. Sp. Res.
36
,
1340
(
2005
).
17.
N. V.
Krisanova
,
I. O.
Trikash
, and
T. A.
Borisova
, “
Synaptopathy under conditions of altered gravity: Changes in synaptic vesicle fusion and glutamate release
,”
Neurochem. Int.
55
,
724
(
2009
).
18.
N.
Pozdnyakova
,
A.
Pastukhov
,
M.
Dudarenko
,
A.
Borysov
,
N.
Krisanova
,
A.
Nazarova
, and
T.
Borisova
, “
Enrichment of inorganic martian dust simulant with carbon component can provoke neurotoxicity microgravity
,”
Sci. Technol.
1
(
29
),
133
(
2017
).
19.
L. J.
Tranvik
, “
New light on black carbon
,”
Nat. Geosci.
11
(
8
),
547
(
2018
).
20.
A.
Tarasenko
,
N.
Pozdnyakova
,
K.
Paliienko
,
A.
Borysov
,
N.
Krisanova
,
A.
Pastukhov
,
O.
Stanovyi
,
O.
Gnatyuk
,
G.
Dovbeshko
, and
T.
Borisova
, “
A comparative study of wood sawdust and plastic smoke particulate matter with a focus on spectroscopic, fluorescent, oxidative, and neuroactive properties
,”
Environ. Sci. Pollut. Res.
29
,
38315
(
2022
).
21.
T.
Borisova
,
N.
Krisanova
,
R.
Sivko
,
L.
Kasatkina
,
A.
Borysov
,
S.
Griffin
, and
M.
Wireman
, “
Presynaptic malfunction: The neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport
,”
Neurochem Int.
59
(
2
),
272
(
2011
).
22.
O.
Shatursky
,
A.
Demchenko
,
I.
Panas
,
N.
Krisanova
,
N.
Pozdnyakova
, and
T.
Borisova
, “
The ability of carbon nanoparticles to increase transmembrane current of cations coincides with impaired synaptic neurotransmission
,”
Biochim. Biophys. Acta - Biomembr.
1864
, No.
1
,
183817
(
2022
).
23.
J. A.
McCubbin
,
H. M.
Zinzow
,
M. A.
Hibdon
,
A. W.
Nathan
,
A. V.
Morrison
,
G. W.
Hayden
,
C.
Lindberg
, and
F. S.
Switzer
, “
Subclinical posttraumatic stress disorder symptoms: Relationships with blood pressure, hostility, and sleep
,”
Cardiovasc Psychiatry Neurol.
2
, 1 (
2016
).
You do not currently have access to this content.