We consider how the absence of thermalization affects the classical Coulomb blockade regime in quantum dots. By solving the quantum kinetic equation in the experimentally accessible regime when the dot has two relevant occupation states, we calculate the current–voltage characteristics for arbitrary coupling to the leads. If the couplings are strongly asymmetric, the Coulomb staircase is practically reduced to the first step, which is independent of the charging energy, when the Fermi energy is comparatively small, while the standard thermalized results are recovered in the opposite case. When the couplings are of the same order, the absence of thermalization has a new, striking signature—a robust additional peak in the differential conductance.

1.
L. P.
Kouwenhoven
,
D. G.
Austing
, and
S.
Tarucha
, “
Few-electron quantum dots
,”
Rep. Prog. Phys.
64
,
701
(
2001
).
2.
S. M.
Reimann
and
M.
Manninen
, “
Electronic structure of quantum dots
,”
Rev. Mod. Phys.
74
,
1283
(
2002
).
3.
I. L.
Aleiner
,
P. W.
Brouwer
, and
L. I.
Glazman
, “
Quantum effects in Coulomb blockade
,”
Phys. Rep.
358
,
309
(
2002
).
4.
Y.
Alhassid
, “
The statistical theory of quantum dots
,”
Rev. Mod. Phys.
72
,
895
(
2000
).
5.
L. P.
Kouwenhoven
., in:
Mesoscopic Electron Transport
, edited by,
L. L.
Sohn
,
L. P.
Kouwenhoven
, and
G.
Schön
(
Springer Netherlands
,
Dordrecht
,
1997
), pp.
105
214
.
6.
F. P. G.
de Arquer
,
D. V.
Talapin
,
V. I.
Klimov
,
Ya.
Arakawa
,
M.
Bayer
, and
E. H.
Sargent
, “
Semiconductor quantum dots: Technological progress and future challenges
,”
Science
373
, No.
6555
,
eaaz8541
(
2021
).
7.
I. O.
Kulik
and
R. I.
Shekhter
, “
Kinetic phenomena and charge discreteness effects in granulated media
,”
Zh. Eksp. Teor. Fiz.
68
,
623
(
1975
), http://jetp.ras.ru/cgi-bin/e/index/e/41/2/p308?a=list
8.
D. V.
Averin
and
K. K.
Likharev
, “
Coulomb blockade of single-electron tunneling and coherent oscillations in small tunnel junctions
,”
J. Low Temp. Phys.
62
,
345
(
1986
).
9.
C. W. J.
Beenakker
, “
Theory of Coulomb-blockade oscillations in the conductance of a quantum dot
,”
Phys. Rev. B
44
,
1646
(
1991
).
10.
D.
Averin
and
K.
Likharev
,
Mesoscopic phenomena in solids
, in:
Modern Problems in Condensed Matter Sciences
, edited by,
B.
Altshuler
,
P.
Lee
, and
R.
Webb
(
Elsevier
,
Amsterdam
,
1991
), Vol.
30
, pp.
173
271
.
11.
M.
Amman
,
R.
Wilkins
,
E.
Ben-Jacob
,
P. D.
Maker
, and
R. C.
Jaklevic
, “
Analytic solution for the current–voltage characteristic of two mesoscopic tunnel junctions coupled in series
,”
Phys. Rev. B
43
,
1146
(
1991
).
12.
Y. V.
Nazarov
and
Y. M.
Blanter
,
Quantum Transport: Introduction to Nanoscience
(
Cambridge University Press
,
Cambridge
,
2009
).
13.
B. L.
Altshuler
,
Y.
Gefen
,
A.
Kamenev
, and
L. S.
Levitov
, “
Quasiparticle lifetime in a finite system: A nonperturbative approach
,”
Phys. Rev. Lett.
78
,
2803
(
1997
).
14.
U.
Sivan
,
Y.
Imry
, and
A. G.
Aronov
, “
Quasi-particle lifetime in a quantum dot
,”
Europhys. Lett.
28
,
115
(
1994
).
15.
Y. M.
Blanter
, “
Electron-electron scattering rate in disordered mesoscopic systems
,”
Phys. Rev. B
54
,
12807
(
1996
).
16.
D. M.
Basko
,
I. L.
Aleiner
, and
B. L.
Altshuler
, “
Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states
,”
Ann. Phys.
321
,
1126
(
2006
).
17.
D. A.
Abanin
and
Z.
Papić
, “
Recent progress in many-body localization
,”
Ann. Phys.
529
,
1700169
(
2017
).
18.
R.
Nandkishore
and
D. A.
Huse
, “
Many-body localization and thermalization in quantum statistical mechanics
,”
Ann. Rev. Condens. Matter Phys.
6
,
15
(
2015
).
19.
D. A.
Abanin
,
E.
Altman
,
I.
Bloch
, and
M.
Serbyn
, “
Colloquium: Many-body localization, thermalization, and entanglement
,”
Rev. Mod. Phys.
91
,
021001
(
2019
).
20.
D. V.
Averin
and
A. N.
Korotkov
, “
Influence of discrete energy spectrum on correlated single-electron tunneling via a mezoscopically small metal granule
,”
Zh. Eksp. Teor. Fiz.
97
,
1661
(
1990
), http://jetp.ras.ru/cgi-bin/e/index/e/70/5/p937?a=list
21.
G.
McArdle
,
R.
Davies
,
I. V.
Lerner
, and
I. V.
Yurkevich
, “
Coulomb staircase in an asymmetrically coupled quantum dot
,”
J. Phys.: Condens. Matter
35
,
475302
(
2023
).
22.
G.
McArdle
,
R.
Davies
,
I. V.
Lerner
, and
I. V.
Yurkevich
, “
Coulomb blockade in a nonthermalized quantum dot
,”
Phys. Rev. Lett.
131
,
206303
(
2023
).
23.
J.
Rammer
and
H.
Smith
, “
Quantum field-theoretical methods in transport theory of metals
,”
Rev. Mod. Phys.
58
,
323
(
1986
).
24.
A.-P.
Jauho
,
N. S.
Wingreen
, and
Y.
Meir
, “
Time-dependent transport in interacting and noninteracting resonant-tunneling systems
,”
Phys. Rev. B
50
,
5528
(
1994
).
25.
A.
Kamenev
and
Y.
Gefen
, “
Zero-bias anomaly in finite-size systems
,”
Phys. Rev. B
54
,
5428
(
1996
).
26.
N.
Sedlmayr
,
I. V.
Yurkevich
, and
I. V.
Lerner
, “
Tunneling density of states at Coulomb-blockade peaks
,”
Europhys. Lett.
76
,
109
(
2006
).
27.
H.
Haug
and
A.-P.
Jauho
,
Quantum Kinetics in Transport and Optics of Semiconductors
(
Springer
,
Berlin
,
1998
).
28.
A.
Altland
and
B. D.
Simons
,
Condensed Matter Field Theory
(
Cambridge University Press
,
Cambridge
,
2010
).
29.
A.
Altland
and
R.
Egger
, “
Nonequilibrium dephasing in Coulomb blockaded quantum dots
,”
Phys. Rev. Lett.
102
,
026805
(
2009
).
30.
S.
Smirnov
and
M.
Grifoni
, “
Slave-boson keldysh field theory for the kondo effect in quantum dots
,”
Phys. Rev. B
84
,
125303
(
2011
).
31.
H.
Pothier S
.
Guéron
,
Norman O.
Birge
,
D.
Esteve
, and
M. H.
Devoret
, “
Energy distribution function of quasiparticles in mesoscopic wires
,”
Phys. Rev. Lett.
79
,
3490
(
1997
).
32.
G.
Kiršanskas
,
J. N.
Pedersen
,
O.
Karlström
,
M.
Leijnse
, and
A.
Wacker
, “
Qmeq 1.0: An open-source python package for calculations of transport through quantum dot devices
,”
Comput. Phys. Commun.
221
,
317
(
2017
).
You do not currently have access to this content.