A short historical review of the development of tunneling concept in low-temperature condensed matter physics, physical electronics, nuclear physics, chemistry, and biology is given. It is shown how the preceding classical physics is related to the quantum mechanical tunneling phenomenon. The emphasis is placed on the common features of various tunneling manifestations in nature. The triumph of the Faraday–Maxwell–Einstein idea of the physical field has been demonstrated.
REFERENCES
1.
T.
Theocharis
and M.
Psimopoulos
, “Where science has gone wrong
,” Nature
329
, 595
(1987
).2.
H.
Lipkin
, On Gamow’s theory of alpha-decay. A comment
, in The Kaleidoscope of Science. The Israel Colloquium. Studies in History, Philosophy, and Sociology
, edited by, E.
Ullmann-Margalit
(D. Reidel Publishing Company
, Dordrecht
, 1986
), p. 187. 3.
R. H.
Stuewer
, Gamow’s theory of alpha-decay
, in The Kaleidoscope of Science. The Israel Colloquium. Studies in History, Philosophy, and Sociology
, edited by, E.
Ullmann-Margalit
(D. Reidel Publishing Company
, Dordrecht
, 1986
), p. 147. 4.
Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
). 5.
Time in Quantum Mechanics
,
edited by, J. G.
Muga
, A.
Ruschhaupt
, and A.
del Campo
(Springer Verlag
, Berlin
, 2009
), Vol. 2. 6.
M.
Razavy
, Quantum Theory of Tunneling
(World Scientific
, Singapore
, 2013
). 7.
S.-D.
Liang
, Quantum Tunneling and Field Electron Emission Theories
(World Scientific
, Singapore
, 2014
). 8.
D.
De Vault
and B.
Chance
, “Studies of photosynthesis using a pulsed laser: I. temperature dependence of cytochrome oxidation rate in chromatium. evidence for tunneling
,” Biophys. J
. 6
, 825
(1966
). 9.
R. R.
Dogonadze
and A. M.
Kuznetsov
, “Theory of charge transfer kinetics at solid-polar liquid interfaces
,” Progr. Surf. Sci
. 6
, 1
(1975
). 10.
R. P.
Bell
, The Tunnel Effect in Chemistry
(Chapman and Hall
, London
, 1980
). 11.
V. I.
Goldanskii
, V. A.
Benderskii
, and L. I.
Trakhtenberg
, “Quantum Cryochemical reactivity of solids,” in Advances in Chemical Physics
, Vol. LXXV, edited by, I.
Prigogine
and S. A.
Rice
(John Wiley and Sons
, New York
, 1989
), p. 349
.12.
V. A.
Benderskii
and V. I.
Goldanskii
, “Tunnelling of heavy particles in the low temperature chemistry
,” Int. Rev. Phys. Chem
. 11
, 1
(1992
). 13.
H.
Nakamura
and G.
Mil’nikov
, Quantum Mechanical Tunneling in Chemical Physics
(CRC Press
, Boca Raton
, 2013
). 14.
T.
Hama
and N.
Watanabe
, “Surface processes on interstellar amorphous solid water: Adsorption, diffusion, tunneling reactions, and nuclear-spin conversion
,” Chem. Rev
. 113
, 8783
(2013
). 15.
X.
Meng
, J.
Guo
, J.
Peng
, J.
Chen
, Z.
Wang
, J.-R.
Shi
, X.-Z.
Li
, E.-G.
Wang
, and Y.
Jiangu
, “Direct visualization of concerted proton tunnelling in a water nanocluster
,” Nature Phys
. 11
, 235
(2015
). 16.
J.
Meisner
and J.
Kästner
, “Atom tunneling in chemistry
,” Angew. Chem. Int. Ed.
55
, 5400
(2016
). 17.
J.
Horgan
, “Josephson’s inner junction
,” Scientific American Magazine
272
, 40
(1995
). 18.
J.
Clarke
, “Brian Josephson and the Royal Society Mond Laboratory
,” J. Supercond
. 24
, 1587
(2021
). 19.
B. D.
Josephson
, “Possible new effects in superconductive tunneling
,” Phys. Lett
. 1
, 251
(1962
). 20.
B. D.
Josephson
, “Supercurrents through barriers
,” Adv. Phys.
14
, 419
(1965
). 21.
B. D.
Josephson
, “Coupled superconductors and beyond
,” Fiz. Nizk. Temp.
38
, 333
(2012
) [Low Temp. Phys.
38, 260 (2012)]. 22.
Josephson Junctions: History, Devices, and Applications
, edited by, E.
Wolf
, G.
Arnold
, M.
Gurvitch
, and J.
Zasadzinski
(Pan Stanford
, Singapore
, 2017
). 23.
J. Z.
Buchwald
and M.
Feingold
, Newton and the Origin of Civilization
(Princeton University Press
, Princeton
, 2012
). 24.
The Correspondence of Isaac Newton (1661–1675)
, edited by, H. W.
Turnbull
(Cambridge University Press
, Cambridge
, 1959
), Vol. 1.25.
A.
Chapman
, England’s Leonardo: Robert Hooke and the Seventeenth-Century Scientific Revolution
(IOP
, Bristol
, 2005
). 26.
27.
Editorial, what’s in a name?
,” Nature Phys.
19
, 1065
(2023
). 28.
M.
Muradoglu
, S. H.
Arnold
, A.
Poddar
, A.
Stanaland
, D.
Yilmaz
, and A.
Cimpian
, “Why a culture of brilliance is bad for physics
,” Nat. Rev. Phys
. 6
, 75
(2024
). 29.
A. M.
Gabovich
and V. I.
Kuznetsov
, “Eponyms in physics: Useful tools and cultural heritage
,” Eur. J. Phys
. 45
, 035802
(2024
). 30.
31.
C.
Cercignani
, Ludwig Boltzmann. The Man Who Trusted Atoms
(Oxford University Press
, Oxford
, 1998
). 32.
R. E.
Langer
and Jo
siah Willard
Gibbs
, Amer. Math. Monthly
46
, 75
(1939
). 33.
L.
Boltzmann
, Lectures on Gas Theory
(Dover Publications
, New York
, 1964
). 34.
J. W.
Gibbs
, The Collected Works of J. Willard Gibbs, PhD, LLD in Two Volumes, Elementary Principles in Statistical Mechanics
(Longmans, Green and CO, Inc
, New York
, 1928
), Vol. 2, Part I.35.
36.
O. W.
Richardson
, “On the negative radiation from hot platinum
,” Proc. Cambridge Philosoph. Soc
. 11
, 286
(1902
).37.
O. W.
Richardson
, LXVII, “The distribution of the molecules of gas in a field of force, with applications to the theory of electrons
,” Phil. Mag
. 28
, 633
(1914
). 38.
W.
Wilson
, “Owen Willans Richardson (1879–1959)
,” Biogr. Mems Fell. R. Soc.
5
, 207
(1960
). 39.
M. E.
Becquerel
, “Researches on the electrical conductibility of gases at high temperatures
,” Phil. Mag
. 6
, 456
(1853
). 40.
M. W.
Davidson
, “Pioneers in optics: Alexandre Edmond Becquerel and William Henry Bragg
,” Microscopy Today
19,
42
(2011
). 41.
F.
Guthrie
, “On a new relation between heat and electricity
,” Proc. Roy. Soc
. 21
, 168
(1873
). 42.
F.
Guthrie
, XXXI. “On a relation between heat and static electricity
,” Phil. Mag
. 46
, 257
(1873
). 43.
D.
Stilwell
, “Frederick Guthrie: A man of action
,” Phys. World
12
, 33
(1999
). 44.
J. J.
Thomson
, XL. “Cathode rays
,” Phil. Mag.
5
, 293
(1897
). 45.
46.
R.
McCormmach
, “J. J. Thomson and the structure of light
,” Brit. J. Hist. Sci
. 3
, 362
(1967
). 47.
J.
Navarro
, A History of the Electron
, edited by, J. J.
and G
. P.
Thomson
(Cambridge University Press
, Cambridge
, 2012
). 48.
L.
Nordheim
, “Zur theorie der thermischen emission und der reflexion von elektronen an metallen
,” Z. Phys.
46
, 833
(1929
). 49.
R. H.
Fowler
, “The photo-electric threshold frequency and the thermionic work function
,” Proc. Roy. Soc. A
118
, 229
(1928
). 50.
R. H.
Fowler
, “The thermionic emission constant A
,” Proc. Roy. Soc. A
122
, 36
(1929
). 51.
W. B.
Nottingham
, Thermionic emission, in Encyclopedia of physics
, Vol. 21. “Electron-Emission Gas Discharges I/Elektronen-Emission Gasentladungen
edited by, I, S.
Flügge
(Springer Verlag
, Berlin
, 1956
), p. 1.52.
C. R.
Crowell
, “The Richardson constant for thermionic emission in Schottky barrier diodes
,” Solid State Electronics
8
, 395
(1965
). 53.
C. R.
Crowell
and S. M.
Sze
, “Current transport in metal-semiconductor barriers
,” Solid State Electronics
9
, 1035
(1966
). 54.
A.
Modinos
, Field, Thermionic and Secondary Electron Emission Spectroscopy
(Plenum Press
, New York
, 1984
).55.
K. L.
Jensen
, “Tutorial: The equations of electron emission and their evaluation
,” J. Appl. Phys
. 135
, 111101
(2024
). 56.
S.
Yamamoto
, “Fundamental physics of vacuum electron sources
,” Rep. Prog. Phys
. 69
, 181
(2006
). 57.
W.
Melitz
, J.
Shen
, A. C.
Kummel
, and S.
Lee
, “Kelvin probe force microscopy and its application
,” Surf. Sci. Rep
. 66
, 1
(2011
). 58.
H.
Kawano
, “Effective work functions of the elements. database, most probable value, previously recommended value, polycrystalline thermionic contrast, change at critical temperature, anisotropic dependence sequence, particle size dependence
,” Progr. Surf. Sci
. 97
, 100583
(2022
). 59.
V. Ya.
Frenkel
, Yakov Ilich Frenkel. His Work, Life and Letters
(Birkhäuser
, Basel
, 1996
).60.
J.
Frenkel
, “On the electrical resistance of contacts between solid conductors
,” Phys. Rev
. 36
, 1604
(1930
). 61.
W.
Mönch
, “On the physics of metal-semiconductor interfaces
,” Rep. Prog. Phys
. 53
, 221
(1990
). 62.
Characterization of Semiconductor Heterostructures and Nanostructures
, 2nd ed., edited by, C.
Lamberti
and G.
Agostini
(Elsevier
, Oxford
, 2013
).63.
T.
Niu
and A.
Li
, “From two-dimensional materials to heterostructures
,” Progr. Surf. Sci
. 90
, 21
(2015
). 64.
Y.
Wang
, S.
Liu
, Q.
Li
, R.
Quhe
, C.
Yang
, Y.
Guo
, X.
Zhang
, Y.
Pan
, J.
Li
, H.
Zhang
, L.
Xu
, B.
Shi
, H.
Tang
, Y.
Li
, J.
Yang
, Z.
Zhang
, L.
Xiao
, F.
Pan
, and J.
Lu
, “Schottky barrier heights in two-dimensional field-effect transistors: From theory to experiment
,” Rep. Prog. Phys
. 84
, 056501
(2021
). 65.
M.
Smith
, “William Gilbert (1544–1603): Physician and founder of electricity
,” J. Med. Biogr
. 5
, 137
(1997
). 66.
67.
J. F.
Corrigan
, “Stephen Gray (1696–1736): An early electrical experimenter
,” Sci. Prog. Twent. Cent
. 19
, 102
(1924
). 68.
S.
Gray
, “V. A letter to Cromwell Mortimer, M. D. secr. R. S. containing several experiments concerning electricity; by Mr. Stephen Gray
,” Phil. Trans. R. Soc. Lond
. 37
, 18
(1729
). 69.
G. S.
Ohm
, “Bestimmung des gesetzes, nach welchem metalle die kontakt elektrizität leiten, nebst einem entwurfe zu einer theorie des voltaschen apparates und des schweiggerschen multiplikators
,” Schweigger’s Journal für Chemie und Physik
46
, 137
, (1826
).70.
G. S.
Ohm
, “Determination of the law in accordance with which metals conduct contact electricity, together with an outline of a theory of the voltaic apparatus and of Schweigger’s multiplier
,” Sci. Prog. Twentieth Century (1919–1933)
26
, 62
(1931
).71.
C.
Connelly
, A History of Ohm’s Law: Investigating the Flow of Electrical Ideas Through the Instruments of Their Production
(Cambridge University Press
, Cambridge
, 2022
). 72.
N. H.
de Vaudrey Heathcote
, “A translation of the paper in which Ohm first announced his law of the galvanic circuit, prefaced by some account of the work of his predecessors
,” Sci. Prog. Twentieth Century (1919–1933)
26
, 51
(1931
).73.
T.
Archibald
, “Tension and potential from Ohm to kirchhoff
,” Centaurus
31
, 141
(1988
). 74.
A. S.
Everest
, “Kirchhoff—gustav robert (1824–1887)
,” Phys. Educ
. 4
, 341
(1969
) 75.
G.
Kirchhoff
, “Ueber eine ableitung der Ohm’schen gesetze, welche sich an die theorie der elektrostatik anschliesst
,” Ann. der Phys
. 154
, 506
(1849
). 76.
J. H.
Jeans
, The Mathematical Theory of Electricity and Magnetism
, 5th ed (Cambridge University Press
, Cambridge
, 1927
).77.
78.
A. A.
Abrikosov
, Fundamentals of the Theory of Metals
(North-Holland
, Amsterdam
, 1988
).79.
80.
K.
Seeger
, Semiconductor Physics. An Introduction
(Springer Verlag
, Berlin
, 2004
). 81.
N. F.
Mott
, “Electrons in transition metals
,” Adv. Phys
. 16
, 49
(1967
). 82.
W. E.
Spear
, “Electronic transport and localization in low mobility solids and liquids
,” Adv. Phys
. 23
, 523
(1974
). 83.
W. E.
Spear
, “Doped amorphous semiconductors
,” Adv. Phys.
26
, 811
(1977
). 84.
J. E.
Enderby
and A. C.
Barnes
, “Liquid semiconductors
,” Rep. Prog. Phys.
53
, 85
(1990
). 85.
J. S.
Dugdale
, The Electrical Properties of Disordered Metals
(Cambridge University Press
, Cambridge
, 1995
). 86.
T.
Blythe
and D.
Bloor
, Electrical Properties of Polymers
(Cambridge University Press
, Cambridge
, 2005
).87.
M.
Faraday
, “XX. Experimental researches in electricity. fourth series
,” Phil. Trans. R. Soc. Lond
. 123
, 507
(1833
). 88.
F. A. J. L.
James
, Michael Faraday. A Very Short Introduction
(Oxford University Press
, Oxford
, 2010
). 89.
A.-M.
Ampère
, Théorie Mathématique des Phénomènes électro-Dynamiques. Uniquement Déduite de L’expérience
(Jacques Gabay
, Sceaux
, 1990
).90.
R.
Locqueneux
and M.
Scheidecker-Chevallier
, Ampère, Encyclopédiste et Métaphysicien
(EDP Sciences
, Lille
, 2005
). 91.
C.
Blondel
and A.
Benseghir
, “The key role of Oersted’s and Ampère’s 1820 electromagnetic experiments in the construction of the concept of electric current
,” Amer. J. Phys
. 85
, 369
(2017
). 92.
C. A.
Coulomb
, Premier Mémoire sur L’électricité et le Magnétisme
, in Histoire de L’Academie Royale des Science. Avec les Mémoires de Mathématique & de Physique, Pour la Même Année. Tirés des Regiftres de Cette Académie (L’Imprimerie Royale
, Paris
, 1785
), p. 569
.93.
C. A.
Coulomb
, Second Mémoire sur L’électricité et le Magnétisme,
, in Histoire de L’Academie Royale des Science. Avec les Mémoires de Mathématique & de Physique, Pour la Même Année. Tirés des Regiftres de Cette Académie (L’Imprimerie Royale
, Paris
, 1785
), p. 578
.94.
I.
Falconer
, “Charles Augustin Coulomb and the fundamental law of electrostatics
,” Metrologia
41
(S107
(2004
). 95.
C. S.
Gillmor
, Coulomb and the Evolution of Physics and Engineering in Eighteenth-Century France
, (
Princeton University Pres
,
Princeton
, 2017
).96.
C.
Wheatstone
, XIII. “The bakerian lecture. An account of several new instruments and processes for determining the constants of a voltaic circuit
,” Phil. Trans. R. Soc. Lond
. 133
, 303
(1843
). 97.
M. L.
Schagrin
, “Resistance to Ohm’s law
,” J. Phys
. 44
, 536
(1963
). 98.
M.
Heidelberger
, “Towards a logical reconstruction of revolutionary change: The case of Ohm as an example
,” Stud. Hist. Phil. Sci
. 11
, 103
(1980
). 99.
T. S.
Kuhn
, The Structure of Scientific Revolution
(The University of Chicago Press
, Chicago
, 1996
).100.
B.
Barber
, “Resistance by scientists to scientific discovery
,” Science
134
, 596
(1961
). 101.
P.
Drude
, “Zur elektronentheorie der metalle
,” Ann. der Phys.
306
, 566
(1900
). 102.
P.
Drude
, “Zur elektronentheorie der metalle; II. teil. galvanomagnetische und thermomagnetische effecte
,” Ann. der Phys
. 308
, 369
(1900
). 103.
H. A.
Lorentz
, The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat
(
Dover Phoenix Editions
, New York
, 2011
).104.
A.
Sommerfeld
, “Zur elektronentheorie der metalle
,” Naturwissenschaften
15
, 825
(1927
). 105.
A.
Sommerfeld
, “Zur elektronentheorie der metalle auf grund der fermischen statistik. I. teil: Allgemeines, strömungs- und austrittsvorgänge
,” Z. Phys.
47
, 1
(1928
). 106.
A.
Sommerfeld
, “Zur elektronentheorie der metalle auf grund der fermischen statistik. II. teil: Thermo-elektrische, galvanomagnetische und thermo-magnetische vorgänge
,” Z. Phys.
47
, 43
(1928
). 107.
A.
Sommerfeld
, “Zur elektronentheorie der metalle
,” Naturwissenschaften
16
, 374
(1928
). 108.
A.
Sommerfeld
and H.
Bethe
, Elektronentheorie der Metalle
(Springer Verlag
, Berlin
, 1933
). 109.
S.
Earnshaw
, “On the nature of the molecular forces which regulate the constitution of the luminiferous ether
,” Transact. Cambridge Philosoph. Soc
. 7
, 97
(1842
).110.
W. T.
Scott
, The Physics of Electricity and Magnetism
(John Wiley and Sons
, New York
, 1959
).111.
R.
Weinstock
, “On a fallacious proof of earnshaw’s theorem
,” Amer. J. Phys
. 44
, 392
(1970
). 112.
W.
Jones
, “Earnshaw’s theorem and the stability of matter
,” Eur. J. Phys
. 1
, 85
(1980
). 113.
E.
Rutherford
, “LXXIX. The scattering of α and β particles by matter and the structure of the atom
,” Phil. Mag
. 21
, 669
(1911
). 114.
A. S.
Eve
and J.
Chadwick
, “Lord rutherford (1871–1937)
,” Obit. Not. Fell. Roy. Soc
. 2
, 394
(1938
). 115.
L.
de Broglie
, “Recherches sur la théorie des quanta
,” Ann. Phys
. 10
, 22
(1925
). 116.
L.
de Broglie
, Research on the Theory of Quanta
(Minkowski Institute Press
, Montreal
, 2021
).117.
A.
Abragam
, “Louis Victor Pierre Raymond de Broglie (15 August 1892 – 19 march 1987)
,” Biogr. Mem. Fell. Roy. Soc
. 34
, 23
(1988
). 118.
W. H.
Heitler
, “Erwin Schrödinger (1887–1961)
,” Biogr. Mem. Fell. Roy. Soc
. 7
, 221
(1961
). 119.
E.
Schrödinger
, “Quantisierung als eigenwertproblem (erste mitteilung)
,” Ann. der Phys
. 384
, 361
(1926
). 120.
E.
Schrödinger
, “Quantisierung als eigenwertproblem (zweite mitteilung)
,” Ann. der Phys
. 384
, 489
(1926
). 121.
E.
Schrödinger
, “Quantisierung als eigenwertproblem (dritte mitteilung: Störungstheorie, mit anwendung auf den starkeffekt der balmerlinien)
,” Ann. der Phys
. 385
, 437
(1926
). 122.
E.
Schrödinger
, “Quantisierung als eigenwertproblem (vierte mitteilung)
,” Ann. der Phys
. 384
, 109
(1926
). 123.
E.
Schrödinger
, “Über das verhältnis der heisenberg-born-jordanschen quantenmechanik zu der meinem
,” Ann. der Phys
. 384
, 734
(1926
). 124.
E.
Schrödinger
, Collected Papers on Wave Mechanics
(Blackie and Son Ltd
, London
, 1928
).125.
J.
Mehra
and H.
Rechenberg
, The Historical Development of Quantum Theory, Vol. 5, Erwin Schrödinger and the Rise of Wave Mechanics, Part 2, The Creation of Wave Mechanics. Early Response and Applications, 1925–1926
(Springer Verlag
, Berlin
, 1987
).126.
C. G.
Darwin
, “The wave equations of the electron
,” Proc. Roy. Soc. A
118
, 654
(1928
). 127.
W.
Gordon
, “Die energieniveaus des wasserstoffatoms nach der diracschen quantentheorie des elektrons
,” Z. Phys
. 48
, 11
(1928
). 128.
W.
Gordon
, “Über den stoß zweier punktladungen nach der wellenmechanik
,” Z. Phys
. 48
, 180
(1928
). 129.
A.
Sommerfeld
, “Zur quantentheorie der spektralliniens
,” Ann. der Phys.
356
, 1
(1916
). 130.
A.
Sommerfeld
, Atomic Structure and Spectral Lines
(E. P. Dutton and Company Inc.
, New York
, 1934
), Vol. 1.131.
M.
Born
, “Arnold Johannes Wilhelm Sommerfeld (1868–1951)
,” Obit. Not. Fell. Roy. Soc.
8
, 274
(1952
). 132.
L.
Onsager
, “Electrostatic interaction of molecules
,” J. Phys. Chem
. 43
, 189
(1939
). 133.
L.
Spruch
, “Pedagogic notes on thomas-Fermi theory (and on some improvements): Atoms, stars, and the stability of bulk matter
,” Rev. Mod. Phys
. 63
, 151
(1991
). 134.
F. J.
Dyson
and A.
Lenard
, “Stability of matter. I,” J. Math. Phys.
8
, 423
(1967
). 135.
A.
Lenard
and F. J.
Dyson
, “Stability of matter. II,” J. Math. Phys.
9
, 698
(1968
). 136.
E. H.
Lieb
and R.
Seiringer
, The Stability of Matter in Quantum Mechanics
(Cambridge University Press
, Cambridge
, 2009
). 137.
K. W.
Böer
, Handbook of the Physics of Thin-Film Solar Cells
(Springer Verlag
, Berlin
, 2013
). 138.
W. A.
Harrison
, Electronic Structure and the Properties of Solids. The Physics of the Chemical Bond
(W. H. Freeman and Company
, San Francisco
, 1980
). 139.
R. L.
Kronig
and W. G.
Penney
, “Quantum mechanics of electrons in crystal lattices
,” Proc. Roy. Soc. A
130
, 499
(1931
). 140.
M.
Dresden
, “Ralph Kronig
,” Phys. Today
50
(3
), 97
(1997
). 141.
L.
Sherfield
, “William george penney, O. M., K. B. E., baron, penney of east hendred (24 June 1909 – 3 march 1991)
,” Biogr. Mem. Fell. Roy. Soc
. 39
, 382
(1994
). 142.
S.
Arrhenius
, “Über die dissociationswärme und den einfluss der temperatur auf den dissociationsgrad der elektrolyte
,” Z. Phys. Chem
. 4U
, 96
(1889
). 143.
S.
Arrhenius
, “Über die reaktionsgeschwindigkeit bei der inversion von rohrzucker durch säuren
,” Z. Phys. Chem
. 4U
, 226
(1889
). 144.
K. J.
Laidler
, “The development of the Arrhenius equation
,” J. Chem. Educ
. 61
, 494
(1984
). 145.
E.
Pollak
and P.
Talkner
, “Reaction rate theory: What it was, where is it today, and where is it going?
,” Chaos
15
, 026116
(2005
). 146.
J. C. P.
, “Prof. svante arrhenius, for. Mem. R.S.
,” Nature
120
, 592
(1927
). 147.
A.
Lorke
, “Boiling eggs, radiation damage, and the arrhenius plot
,” Phys. Today
74
, 66
(May 2021
). 148.
B. J.
Carr
and M. J.
Rees
, “The anthropic principle and the structure of the physical world
,” Nature
278
, 605
(1979
). 149.
B.
Carter
, “The anthropic principle and its implications for biological evolution
,” Phil. Trans. R. Soc. Lond. A
310
, 347
(1983
). 150.
A. N.
Schellekens
, “The emperor’s last clothes? overlooking the string theory landscape
,” Rep. Prog. Phys
. 71
, 072201
(2008
). 151.
J. D.
Barrow
and F. J.
Tipler
, The Anthropic Cosmological Principle
(Oxford University Press
, New York
, 2009
).152.
A. N.
Schellekens
, “Life at the interface of particle physics and string theory
,” Rev. Mod. Phys
. 85
, 1491
(2013
). 153.
M.
Planck
, “Ueber das gesetz der energieverteilung im normalspektrum
,” Ann. der Phys
. 309
, 553
(1901
). 154.
155.
M.
Born
, “Max karl ernst ludwig Planck (1858–1947)
,” Obit. Not. Fell. Roy. Soc
. 6
, 161
(1948
). 156.
J. D.
Cockcroft
, “Niels henrik david Bohr (1885–1962)
,” Biogr. Mem. Fell. Roy. Soc
. 9
, 37
(1963
). 157.
N.
Bohr
, “I. On the constitution of atoms and molecules
,” Phil. Mag
. 26
, 1
(1913
). 158.
N.
Bohr
, “XXXVII. On the constitution of atoms and molecules. part II. systems containing only a single nucleus
,” Phil. Mag
. 26
, 476
(1913
). 159.
N.
Bohr
, “LXXIII. On the constitution of atoms and molecules. part III. systems containing several nuclei
,” Phil. Mag
. 26
, 857
(1913
). 160.
I.
Newton
, Opticks: or, a Treatise of the Reflections, Refractions, Inflections, and Colours of Light
(Dover Publications
, New York
, 1952
).161.
A.
Lipson
, S. G.
Lipson
, and H.
Lipson
, Optical Physics
, 4th ed (Cambridge University Press
, Cambridge
, 2011
). 162.
E. E.
Hall
, “The penetration of totally reflected light into the rarer medium
,” Phys. Rev
. 15
, 73
(1902
). 163.
S.
Zhu
, A. W.
Yu
, D.
Hawley
, and R.
Roy
, “Frustrated total internal reflection: A demonstration and review
,” Amer. J. Phys
. 54
, 601
(1986
). 164.
M.
Bertolotti
, C.
Sibilia
, and A. M.
Guzmán
, Evanescent Waves in Optics. An Introduction to Plasmonics
(Springer Verlag
, Cham
, 2017
). 165.
Y.
Kalkal
and V.
Kumar
, “Understanding energy propagation during reflection of an evanescent electromagnetic wave
,” Amer. J. Phys.
89
, 877
(2021
). 166.
C.
Davisson
and L. H.
Germer
, “The scattering of electrons by a single crystal of nickel
,” Nature
119
, 558
(1927
). 167.
G. P.
Thomson
and A.
Reid
, “Diffraction of cathode rays by a thin film
,” Nature
119
, 890
(1927
). 168.
C.
Davisson
and L. H.
Germer
, “Diffraction of electrons by a crystal of nickel
,” Phys. Rev
. 30
, 705
(1927
). 169.
K.
Bongs
and K.
Sengstock
, “Physics with coherent matter waves
,” Rep. Prog. Phys
. 67
, 907
(2004
). 170.
M.
Arndt
, “De Broglie’s meter stick: Making measurements with matter waves
,” Phys. Today
67
(5
), 30
(2014
). 171.
C.
Brand
, S.
Troyer
, C.
Knobloch
, O.
Cheshnovsky
, and M.
Arndt
, “Single-, double-, and triple-slit diffraction of molecular matter waves
,” Amer. J. Phys
. 89
, 1132
(2021
). 172.
L.
Mandelstam
and M.
Leontowitsch
, “Zur theorie der schrödingerschen gleichung
,” Z. Phys
. 47
, 131
(1928
). 173.
S. R.
Gadre
and N.
Sahu
, “Friedrich hund: A pioneer of quantum chemistry (1896–1997)
,” Resonance
27
, 1483
(2022
). 174.
F.
Hund
, “Zur deutung der molekelspektren. I
,” Z. Phys
. 40
, 742
(1927
). 175.
F.
Hund
, “Zur deutung der molekelspektren. II
,” Z. Phys.
42
, 93
(1927
). 176.
F.
Hund
, “Zur deutung der molekelspektren. III. bemerkungen über das schwingungs- und rotationsspektrum bei molekeln mit mehr als zwei kernen
,” Z. Phys
. 43
, 805
(1927
). 177.
E.
Merzbacher
, “The early history of quantum tunneling
,” Phys. Today
55
(8
), 44
(2002
). 178.
C.
Kleint
, “On the early history of field emission including attempts of tunneling spectroscopy
,” Progr. Surf. Sci
. 42
, 101
(1998
). 179.
Ch.
Kleint
, “Comments and references relating to early work in field electron emission
,” Surf. Interface Anal
. 36
, 387
(2004
). 180.
J. E.
Lilienfeld
, “Die elektrizitätsleitung im extremen vakuum
,” Ann. der Phys
. 337
, 673
(1910
). 181.
C.
Kleint
, “Julius edgar lilienfeld: Life and profession, progr
.” Surf. Sci
. 57
, 253
(1998
). 182.
F.
Rother
, “Über den austritt von elektronen aus kalten metallen
,” Ann. der Phys
. 386
, 317
(1926
). 183.
W.
Schottky
, “Über kalte und warme elektronenentladungen
,” Z. Phys.
14
, 63
(1923
). 184.
H.
Welker
, “Walter Schottky
,” Phys. Today
29
(6
), 63
(1976
). 185.
W.
Thomson
, III. Geometrical investigations with reference to the distribution of electricity on spherical conductors
, in The Cambridge and Dublin Mathematical Journal
, Vol. III, edited by, W.
Thomson
(Macmillan, Barclay, and Macmillan
, Cambridge
, 1848
), p. 141. 186.
J. Z.
Buchwald
, “William thomson and the mathematization of Faraday’s electrostatics
,” Hist. Stud. Phys. Sci
. 8
, 101
(1977
). 187.
M.
Trainer
, “In memoriam: Lord Kelvin, recipient of the John Fritz Medal in 1905
,” Phys. Perspect
. 10
, 212
(2008
). 188.
E. A.
Milne
, “Ralph Howard Fowler (1889–1944)
,” Obit. Not. Fell. Roy. Soc
. 5
, 61
(1945
).190.
R. H.
Fowler
and L. W.
Nordheim
, “Electron emission in intense electric fields
,” Proc. Roy. Soc. A
119
, 173
(1928
). 191.
J. R.
Oppenheimer
, “Three notes on the quantum theory of aperiodic effects
,” Phys. Rev
. 31
, 66
(1928
). 192.
J. R.
Oppenheimer
, “On the quantum theory of the autoelectric field currents
,” Proc. Nat. Acad. Sci. USA
14
, 363
(1928
). 193.
A.
Pais
and R. P.
Crease
, J. Robert Oppenheimer: A Life
(Oxford University Press
, Oxford
, 2006
). 194.
R. A.
Millikan
and C. F.
Eyring
, “Laws governing the pulling of electrons out of metals by intense electrical fields
,” Phys. Rev
. 27
, 51
(1926
). 195.
R. A.
Millikan
and C. C.
Lauritsen
, “Relations of field-currents to thermionic-currents
,” Proc. Nat. Acad. Sci. USA
14
, 45
(1928
). 196.
J. W.
Gadzuk
and E. W.
Plummer
, “Field emission energy distribution (FEED)
,” Rev. Mod. Phys
. 45
, 487
(1973
). 197.
R. G.
Forbes
, “Refining the application of fowler-nordheim theory
,” Ultramicroscopy
79
, 11
(1999
). 198.
L. W.
Nordheim
, “The effect of the image force on the emission and reflexion of electrons by metals
,” Proc. Roy. Soc. A
121
, 626
(1928
). royalsocietypublishing.org/doi/10.1098/rspa.1928.0222199.
R. E.
Burgess
, H.
Kroemer
, and J. M.
Houston
, “Corrected values of fowler-nordheim field emission functions v(y) and s(y)
, “Phys. Rev
. 90
, 515
(1953
). 200.
S. C.
Miller
, Jr and R. H.
Good
, Jr., “A WKB-type approximation to the schrödinger equation
,” Phys. Rev
. 91
, 174
(1953
). 201.
E. L.
Murphy
and R. H.
Good
, Jr., “Thermionic emission, field emission, and the transition region
,” Phys. Rev
. 102
, 1464
(1956
). 202.
R. H.
Ritchie
, “Surface plasmons and the image force in metals
,” Phys. Lett. A
38
, 189
(1972
). 203.
E. N.
Economou
and K. L.
Ngai
, “Surface plasma oscillations and related surface effects in solids
,” Adv. Chem. Phys
. 27
, 265
(1974
).204.
A. A.
Kornyshev
, A. I.
Rubinshtein
, and M. A.
Vorotyntsev
, “Image potential near a dielectric-plasma-like medium interface
,” Phys. Status Solidi B
84
, 125
(1977
). 205.
A. M.
Gabovich
, L. G.
Il’chenko
, E. A.
Pashitskii
, and Yu. A.
Romanov
, “Charge screening and electron density friedel oscillations in metals with different Fermi surface shape
,” Zh. Éksp. Teor. Fiz
. 75
, 249
(1978
) [Sov. Phys. JETP 48, 124 (1978)].206.
A. M.
Gabovich
, L. G.
Il’chenko
, E. A.
Pashitskii
, and Yu. A.
Romanov
, “Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape
,” Surf. Sci
. 94
, 179
(1980
). 207.
R. G.
Forbes
, “Simple derivation of the formula for sommerfeld supply density used in electron-emission physics and limitations on its use
,” J. Vac. Sci. Technol. B
28
, 1326
(2010
). 208.
K. L.
Jensen
, “Exchange-correlation, dipole, and image charge potentials for electron sources: Temperature and field variation of the barrier height
,” J. Appl. Phys
. 85
, 2667
(1999
). 209.
A. M.
Gabovich
and A. I.
Voitenko
, “Electrostatic charge-charge and dipole-dipole interactions near the surface of a medium with screening non-locality (review article)
,” Fiz. Nizk. Temp
. 42
, 841
(2016
) [Low Temp. Phys.
42, 661 (2016)]. 210.
J.
Lindhard
, “On the properties of a gas of charged particles
,” Kgl. Danske Videnskab. Selskab. Mat.-Fys. Medd
. 28
, No. 8
, 1
(1954
).211.
Spatial Dispersion in Solids and Plasmas
, edited by, P.
Halevi
(Elsevier
, Amsterdam
, 1992
).212.
D. M.
Newns
, “Fermi-Thomas response of a metal surface to an external point charge
,” J. Chem. Phys
. 50
, 4572
(1969
). 213.
H.
Jeffreys
, “On certain approximate solutions of lineae differential equations of the second order
,” Proc. Lond. Math. Soc
. 22–23
, 428
(1925
). 214.
G.
Wentzel
, “Eine verallgemeinerung der quantenbedingungen für die zwecke der wellenmechanik
,” Z. Phys.
38
, 518
(1926
). 215.
H. A.
Kramers
, “Wellenmechanik und halbzahlige quantisierung
,” Z. Phys
. 39
, 828
(1926
). 216.
N.
Fröman
and P. O.
Fröman
, JWKB Approximation. Contributions to the Theory
(North-Holland
, Amsterdam
, 1965
).217.
A. H.
Cook
, “Sir Harold Jeffreys (2 April 1891 – 18 march 1989)
,” Biogr. Mem. Fell. Roy. Soc
. 36
, 302
(1990
). 218.
M. C.
Galavotti
, “Harold Jeffreys’ probabilistic epistemology: Between logicism and subjectivism
,” Brit. J. Phil. Sci
. 54
, 43
(2003
). 219.
V. L.
Telegdi
, “Gregor Wentzel
,” Phys. Today
31
(11
), 85
(1978
). 220.
M.
Dresden
, H. A. Kramers: Between Tradition and Revolution
(Springer Verlag
, New York
, 1987
).221.
L. H.
Thomas
, “Léon Brillouin; theorist was also radio engineer
,” Phys. Today
23
(1
), 125
(1970
). 222.
J.
Frenkel
, Wave Mechanics. Elementary Theory
(Oxford University Press
, Oxford
, 1932
).223.
J. G.
Simmons
, “Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film
,” J. Appl. Phys
. 34
, 1793
(1963
). 224.
J. G.
Simmons
, “Electric tunnel effect between dissimilar electrodes separated by a thin insulating film
,” J. Appl. Phys
. 34
, 2581
(1963
). 225.
S. G.
Christov
, “Electron currents through barriers between two metals
,” Contemp. Phys
. 13
, 199
(1972
). 226.
A. I.
Voitenko
, A. M.
Gabovich
, and V. M.
Rozenbaum
, “Dynamic image forces and tunneling in three-layer systems
,” Fiz. Nizk. Temp
. 22
, 86
(1996
) [Low Temp. Phys. 22, 64 (1996)].227.
A. M.
Gabovich
, V. M.
Rosenbaum
, and A. I.
Voitenko
, “Dynamical image forces in three-layer systems and field emission
,” Surf. Sci
. 186
, 523
(1987
). 228.
A. M.
Gabovich
and A. I.
Voitenko
, “Electrostatic image force energy for charges in three-layer structures: Exact formulas and their approximations
,” J. Phys.: Condens. Matter
33
, 205002
(2021
). 229.
L.
Esaki
, “Long journey into tunneling
,” Rev. Mod. Phys
. 46
, 237
(1974
). 230.
J. L.
Tomlin
, “Elastic and inelastic electron tunnelling
,” Progr. Surf. Sci.
31
, 131
(1989
). 231.
M. A.
Kastner
, “The single-electron transistor
,” Rev. Mod. Phys.
64
, 849
(1992
). 232.
T. J.
Thornton
, “Mesoscopic devices
,” Rep. Prog. Phys.
57
, 311
(1994
). 233.
M.
Bode
, “Spin-polarized scanning tunnelling microscopy
,” Rep. Prog. Phys
. 66
, 523
(2003
). 234.
S. R. K.
Pandian
, C.-J.
Yuan
, C.-C.
Lin
, W.-H.
Wang
, and C.-C.
Chang
, “DNA-based nanowires and nanodevices
,” Adv. Phys. X
2
, 22
(2017
). 235.
C.
Bäuerle
, D. C.
Glattli
, T.
Meunier
, F.
Portier
, P.
Roche
, P.
Roulleau
, S.
Takada
, and X.
Waintal
, “Coherent control of single electrons: A review of current progress
,” Rep. Prog. Phys
. 81
, 056503
(2018
). 236.
J. M.
Ziman
, Principles of the Theory of Solids
(Cambridge University Press
, Cambridge
, 1972
).237.
V. S.
Popov
, “Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory)
,” Usp. Fiz. Nauk
174
, 921
(2004
) [Physics Usp.
47, 855 (2004)]. 238.
B. M.
Karnakov
, V. D.
Mur
, S. V.
Popruzhenko
, and V. S.
Popov
, “Current progress in developing the nonlinear ionization theory of atoms and ions
,” Usp. Fiz. Nauk
185
, 3
(2015
) [Physics Usp.
58, 3 (2015)]. 239.
R. L.
Murray
, Nuclear Energy. An Introduction to the Concepts, Systems, and Applications of Nuclear Processes
, 5th. ed. (Butterworth-Heinemann
, Oxford
, 2001
).240.
Yu. A. Berezhnoi
, The Quantum World of Nuclear Physics
(World Scientific
, Singapore
, 2005
).241.
E.
Rutherford
, VIII. “Uranium radiation and the electrical conduction produced by it
,” Phil. Mag
. 47
, 109
(1899
). 242.
E.
Rutherford
and H.
Geiger
, “The charge and nature of the α-particle
,” Proc. Roy. Soc. A
81
, 162
(1908
). 243.
E.
Rutherford
, LI. “Structure of the radioactive atom and origin of the α-rays
,” Phil. Mag
. 4
, 580
(1927
). 244.
H.
Geiger
and J. M.
Nuttall
, “LVII. The ranges of the α particles from various radioactive substances and a relation between range and period of transformation
,” Phil. Mag
. 22
, 613
(1911
). 245.
H.
Geiger
and J. M.
Nuttall
, “XL. The ranges of the α particles from uranium,” Phil. Mag
. 23
, 439
(1912
). 246.
J. G.
Beckerley
, “What is the ‘Geiger–Nuttall law’?
,” Amer. J. Phys
. 13
, 158
(1945
). 247.
A. T.
Krebs
, “Hans Geiger: Fiftieth anniversary of the publication of his doctoral thesis
, 23 July 1906,” Science
124, 166 (1956
). 248.
G. D.
Rochester
, “J. M. Nuttall (1890–1958
),” Nucl. Phys
. 6
, 541
(1958
). 249.
E.
Rutherford
and J.
Chadwick
, XCIX. “Scattering of particles by atomic nuclei and the law of force
,” Phil. Mag
. 50
, 889
(1925
). 250.
E.
Harper
, “George Gamow: Scientific amateur and polymath
,” Phys. Perspect.
3
, 335
(2001
). 251.
G.
Gamow
, “Zur quantentheorie des atomkernes
,” Z. Phys.
51
, 204
(1928
). 252.
G.
Gamow
, “The quantum theory of nuclear disintegration
,” Nature
122
, 805
(1928
). 253.
G.
Gamow
, “Zur quantentheorie der atomzertrümmerung
,” Z. Phys.
52
, 510
(1929
). 254.
G.
Gamow
and F. G.
Houtermans
, “Zur quantenmechanik des radioaktiven kerns
,” Z. Phys.
52
, 496
(1929
). 255.
M. A.
Day
, “E. U. condon: Science, religion, and the politics of world peace
,” Phys. Perspect
. 10
, 4
(2008
). 256.
N. F.
Mott
, “Dr. R. W. gurney
,” Nature
171
, 910
(1953
). 257.
E. U.
Condon
, “Tunneling—how it all started
,” Amer. J. Phys
. 46
, 319
(1978
). 258.
R. W.
Gurney
and E. U.
Condon
, “Wave mechanics and radioactive disintegration
,” Nature
122
, 439
(1928
). 259.
R. W.
Gurney
and E. U.
Condon
, “Quantum mechanics and radioactive disintegration
,” Phys. Rev.
33
, 127
(1929
). 260.
R. H.
Fowler
and A. H.
Wilson
, “A detailed study of the “radioactive decay” of and the penetration of α-particles into a simplified one-dimensional nucleus
,” Proc. Roy. Soc. A
124
, 493
(1929
). 261.
E. H.
Sondheimer
, “Sir Alan Herries Wilson (2 July 1906 – 30 September 1995)
,” Biogr. Mem. Fell. Roy. Soc
. 45
, 548
(1999
). 262.
S.
Shlomo
, “Nuclear Coulomb energies
,” Rep. Prog. Phys.
41
, 957
(1978
). 263.
A.
Sitenko
and V.
Tartakovskii
, Theory of Nucleus: Nuclear Structure and Nuclear Interaction
(Springer Verlag
, Dordrecht
, 1997
). 264.
W.
Greiner
and J. A.
Maruhn
, Nuclear Models
(Springer Verlag
, Berlin
, 1996
). 265.
M.
Bender
, P.-H.
Heenen
, and P.-G.
Reinhard
, “Self-consistent mean-field models for nuclear structure
,” Rev. Mod. Phys
. 75
, 121
(2003
). 266.
R. P.
Bell
, “The application of quantum mechanics to chemical kinetics
,” Proc. Roy. Soc. A
139
, 466
(1933
). 267.
R. P.
Bell
, “The tunnel effect correction for parabolic potential barriers
,” Trans. Faraday Soc
. 55
, 1
(1959
). 268.
M. J.
Stern
and R. E.
Weston
, Jr., “Phenomenological manifestations of quantum-mechanical tunneling. I. curvature in arrhenius plots
,” J. Chem. Phys
. 60
, 2803
(1974
). 269.
Quantum Tunnelling in Enzyme-Catalysed Reactions
, edited by, R. K.
Allemann
and N. S.
Scrutton
(The Royal Society of Chemistry
, Cambridge
, 2009
).270.
R. P.
Bell
, J. A.
Fendley
, and J. R.
Hulett
, “The hydrogen isotope effect in the bromination of 2-carbethoxycyclopentanone
,” Proc. Roy. Soc. A
235
, 453
(1956
). 271.
G.
Brunton
, D.
Griller
, L. R. C.
Barclay
, and K. U.
Ingold
, “Kinetic applications of electron paramagnetic resonance spectroscopy. 26. quantum-mechanical tunneling in the isomerization of sterically hindered aryl radicals
,” J. Am. Chem. Soc.
98
, 6803
(1976
). 272.
P. R.
Schreiner
, H. P.
Reisenauer
, D.
Ley
, D.
Gerbig
, C.-H.
Wu
, and W. D.
Allen
, “Methylhydroxycarbene: Tunneling control of a chemical reaction
,” Science
332
, 1300
(2011
). 273.
R. P.
Bell
, The Proton in Chemistry
(Springer Verlag
, New York
, 1973
).274.
J. P.
Klinman
, “Linking protein structure and dynamics to catalysis: The role of hydrogen tunnelling
,” Science
361
, 1323
(2006
). 275.
R. A.
Marcus
, “Summarizing lecture: Factors influencing enzymatic H-transfers, analysis of nuclear tunnelling isotope effects and thermodynamic versus specific effects
,” Science
361
, 1445
(2006
). 276.
R. I.
Cukier
and D. G.
Nocera
, “Proton-coupled electron transfer
,” Annu. Rev. Phys. Chem.
49
, 337
(1998
). 277.
M. H. V.
Huynh
and T. J.
Meyer
, “Proton-coupled electron transfer
,” Chem. Rev.
107
, 5004
(2007
). 278.
S. Y.
Reece
and D. G.
Nocera
, “Proton-coupled electron transfer in biology: Results from synergistic studies in natural and model systems
,” Annu. Rev. Biochem
. 78
, 673
(2009
). 279.
A.
Migliore
, N. F.
Polizzi
, M. J.
Therien
, and D. N.
Beratan
, “Biochemistry and theory of proton-coupled electron transfer
,” Chem. Rev
. 114
, 3381
(2014
). 280.
S.
Hammes-Schiffer
, “Proton-coupled electron transfer: Moving together and charging forward
,” J. Am. Chem. Soc
. 137
, 8860
(1976
). 281.
M.
Born
and R.
Oppenheimer
, “Zur Quantentheorie der Molekeln,” Ann. der Phys.
389
, 457
(1927
). 282.
J.
Franck
, “Elementary processes of photochemical reactions
,” Trans. Faraday Soc
. 21
, 536
(1926
). 283.
E. U.
Condon
, “A theory of intensity distribution in band systems
,” Phys. Rev
. 28
, 1182
(1926
). 284.
D. R.
Weinberg
, C. J.
Gagliardi
, J. F.
Hull
, C. F.
Murphy
, C. A.
Kent
, B. C.
Westlake
, A.
Paul
, D. H.
Ess
, D. G.
McCafferty
, and T. J.
Meyer
, “Proton-coupled electron transfer
,” Chem. Rev.
112
, 4016
(2012
). 285.
J.
McFadden
and J.
Al-Khalili
, Life on the Edge. The Coming of Age of Quantum Biology
(Crown Publishers
, New York
, 2014
).286.
Quantum Effects in Biology
, edited by, M.
Mohseni
, Y.
Omar
, G. S.
Engel
, and M. B.
Plenio
(Cambridge University Press
, Cambridge
, 2014
).287.
J.
Cao
, R. J.
Cogdell
, D. F.
Coker
, H.-G.
Duan
, J.
Hauer
, U.
Kleinekathöfer
, T. L. C.
Jansen
, T.
Mančal
, R. J. D.
Miller
, J. P.
Ogilvie
, V. I.
Prokhorenko
, T.
Renger
, H.-S.
Tan
, R.
Tempelaar
, M.
Thorwart
, E.
Thyrhaug
, S.
Westenhoff
, and D.
Zigmantas
, “Quantum biology revisited
,” Sci. Adv.
6
, eaaz4888
(2020
). 288.
Y.
Kim
, F.
Bertagna
, E. M.
D’Souza
, D. J.
Heyes
, L. O.
Johannissen
, E. T.
Nery
, A.
Pantelias
, A. S.-P.
Jimenez
, L.
Slocombe
, M. G.
Spencer
, J.
Al-Khalili
, G. S.
Engel
, S.
Hay
, S. M.
Hingley-Wilson
, K.
Jeevaratnam
, A. R.
Jones
, D. R.
Kattnig
, R.
Lewis
, M.
Sacchi
, N. S.
Scrutton
, S. R. P.
Silva
, and J.
McFadden
, “Quantum biology: An update and perspective
,” Quant. Rep
. 3
, 80
(2021
). 289.
N. F.
Mott
, “Werner heisenberg (5 December 1901 – 1 February 1976)
,” Biogr. Mem. Fell. Roy. Soc
. 23
, 213
(1977
). 290.
W.
Heisenberg
, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,” Z. Phys.
43
, 172
(1927
). 291.
E. H.
Kennard
, “Zur quantenmechanik einfacher bewegungstypen
,” Z. Phys.
44
, 326
(1927
). 292.
H. P.
Robertson
, “The uncertainty principle
,” Phys. Rev.
34
, 163
(1929
). 293.
H.
Weyl
, The Theory of Groups and Quantum Mechanics
(Dover Publications
, New York
, 1950
).294.
G.
Blado
, T.
Prescott
, J.
Jennings
, J.
Ceyanes
, and R.
Sepulveda
, “Effects of the generalised uncertainty principle on quantum tunnelling
,” Eur. J. Phys
. 37
, 025401
(2016
) 295.
R. E.
Peierls
, “Wolfgang ernst pauli (1900–1958)
,” Biogr. Mem. Fell. Roy. Soc
. 5
, 174
(1960
). 296.
W.
Pauli
, “Über den zusammenhang des abschlusses der elektronengruppen im atom mit der komplexstruktur der spektren
,” Z. Phys.
31
, 765
(1925
). 297.
W.
Pauli
, “The connection between spin and statistics
,” Phys. Rev
. 58
, 716
(1940
). 298.
M.
Massimi
, Pauli’s Exclusion Principle. The Origin and Validation of a Scientific Principle
(Cambridge University Press
, Cambridge
, 2005
). 299.
M.
Born
, “The mysterious number 137
,” Proc. Indian Acad. Sci. A
2
, 533
(1935
). 300.
F. J.
Dyson
and A.
Lenard
, “Ground-state energy of a finite system of charged particles
,” J. Math. Phys
. 8
, 1538
(1967
). 301.
J. C.
Brookes
, “Quantum effects in biology: Golden rule in enzymes, olfaction, photosynthesis and magnetodetection
,” Proc. Roy. Soc. A
473
, 20160822
(2017
). 302.
L.
Slocombe
, M.
Sacchi
, and J.
Al-Khalili
, “An open quantum systems approach to proton tunnelling in DNA
,” Commun. Phys
. 5
, 109
(2022
). 303.
A. O.
Caldeira
and A. J.
Leggett
, “Quantum tunneling in a dissipative system
,” Ann. Phys
. 149
, 374
(1983
). 304.
M.
Schlosshauer
, Decoherence and the Quantum-to-Classical Transition
(Springer Verlag
, Berlin
, 2008
).305.
A. A.
Kornyshev
, A. M.
Kuznetsov
, J.
Ulstrup
, and U.
Stimming
, “Medium effects on elementary charge transfer processes in liquid and solid environments
,” J. Phys. Chem. B
101
, 5917
(1997
). 306.
A. A.
Kornyshev
, A. M.
Kuznetsov
, and U.
Stimming
, “A model for low temperature electrochemical proton transfer: Temperature and isotope effects on kinetic parameters
,” J. Chem. Phys
. 106
, 9523
(1997
). 307.
A. M.
Kuznetsov
and J.
Ulstrup
, “Theory of interrelated electron and proton transfer processes
,” Russ. J. Electrochem
. 39
, 9
(2003
). 308.
A. M.
Gabovich
and V.
Kuznetsov
, “Scientifc realism from a polysystemic view of physical theories and their functioning
,” Global Philos
. 33
, 53
(2023
). 309.
J.
Renn
and H.
Gutfreund
, The Einsteinian Revolution. The Historical Roots of his Breakthroughs
(Princeton University Press
, Princeton
, 2023
). 310.
311.
A. M.
Gabovich
and N. A.
Gabovich
, “How to explain the non-zero mass of electromagnetic radiation consisting of zero-mass photons
,” Eur. J. Phys
. 28
, 649
(2007
). 312.
W. E.
Lamb
, Jr., Anti-photon, Appl. Phys.
60
, 77
(1995
). 313.
I.
Bialynicki-Birula
, Photon wave function
, in Progress in Optics. XXXVI
, edited by, E.
Wolf
(Elsevier
, Amsterdam
, 1996
), p. 245. 314.
I.
Bialynicki-Birula
and Z.
Bialynicki-Birula
, “Why photons cannot be sharply localized
,” Phys. Rev. A
79
, 032112
(2009
). 315.
L.
Mandel
and E.
Wolf
, Optical Coherence and Quantum Optics
(Cambridge University Press
, Cambridge
, 1995
). 316.
M. O.
Scully
and M. S.
Zubairy
, Quantum Optics
(Cambridge University Press
, Cambridge
, 1997
). 317.
H. A.
Bachor
and T. C.
Ralph
, A Guide to Experiments in Quantum Optics
, 3rd ed. (Wiley-VCH Verlag
, Weinheim
, 2019
). 318.
A.
Robinson
, The Last Man Who Knew Everything. Thomas Young, The Anonymous Polymath Who Proved Newton Wrong, Explained How We See, Cured the Sick, and Deciphered the Rosetta Stone, Among Other Feats of Genius
(Oneworld Publications
, Oxford
, 2007
).319.
R. H.
Silliman
, “Fresnel and the emergence of physics as a discipline
,” Hist. Stud. Phys. Sci
. 4
, 137
(1974
). 320.
B.
Mahon
, The Man Who Changed Everything. The Life of James Clerk Maxwell
(John Wiley and Sons
, Chichester, West Sussex
, 2003
).321.
M. O.
Scully
and M.
Sargent
III, “The concept of the photon
,” Phys. Today
25
, 38
(March 1972
). 322.
J.
Petri
and H.
Niedderer
, “A learning pathway in high-school level quantum atomic physics
,” Int. J. Sci. Educ
. 20
, 1075
(1998
). 323.
D.
Gabor
, “Theory of communication. part 1: The analysis of information
,” J. Inst. Electrical Engineers
93
, 429
(1946
). 324.
325.
E. C.
Kemble
, The Fundamental Principles of Quantum Mechanics with Elementary Applications
(McGraw-Hill
, New York
, 1937
).326.
M.
Moshinsky
, “Diffraction in time and the time-energy uncertainty relation
,” Amer. J. Phys
. 48
, 1037
(1980
). 327.
R. G.
Newton
, Scattering Theory of Waves and Particles
(Springer Verlag
, Berlin
, 1982
). 328.
P.
Pfeifer
and J.
Fröhlich
, “Generalized time-energy uncertainty relations and bounds on lifetimes of resonances
,” Rev. Mod. Phys
. 67
, 759
(1995
). 329.
J. S.
Briggs
, “A derivation of the time-energy uncertainty relation
,” J. Phys.: Conf. Ser
. 99
, 012002
(2008
). 330.
P.
Busch
, The time-energy uncertainty relation
, in Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
), p. 73. 331.
J.
Denur
, “The energy-time uncertainty principle and quantum phenomena
,” Amer. J. Phys
. 78
, 1132
(2010
). 332.
V. V.
Dodonov
and A. V.
Dodonov
, “Energy-time and frequency-time uncertainty relations: Exact inequalities
,” Phys. Scr
. 90
, 074049
(2015
). 333.
B. L.
Cohen
, “A simple treatment of potential barrier penetration
,” Amer. J. Phys
. 33
, 97
(1965
). 334.
335.
A.
Hobson
, “Teaching quantum uncertainty
,” Phys. Teach.
49
, 434
(2011
). 336.
S.
Boughn
and M.
Reginatto
, “Another look through heisenberg’s microscope
,” Eur. J. Phys
. 39
, 035402
(2018
). 337.
R.
Ehrlich
, Why Toast Lands Jelly-Side Down. Zen and the Art of Physics Demonstrations
(Princeton University Press
, Princeton
, 1997
). 338.
D.
Courjon
and C.
Bainier
, “Near field microscopy and near field optics
,” Rep. Prog. Phys
. 57
, 989
(1994
). 339.
R.
Landauer
and Th.
Martin
, “Barrier interaction time in tunneling
,” Rev. Mod. Phys
. 66
, 217
(1994
). 340.
F.
de Fornel
, Evanescent Waves. From Newtonian Optics to Atomic Optics
(Springer Verlag
, Berlin
, 2001
). 341.
V. S.
Olkhovsky
, E.
Recami
, and J.
Jakiel
, “Unified time analysis of photon and particle tunnelling
,” Phys. Rep
. 398
, 133
(2004
). 342.
M.
Planck
, “Über die begründung des gesetzes der schwarzen strahlung
,” Ann. der Phys
. 342
, 642
(1901
). 343.
P. W.
Milonni
, The Quantum Vacuum. An Introduction to Quantum Electrodynamics
(Academic Press
, San-Diego
, 1994
). 344.
R.
Loudon
, The Quantum Theory of Light, Third Edition
(Oxford University Press
, New York
, 2000
).345.
A.
Hobson
, “There are no particles, there are only fields
,” Amer. J. Phys
. 81
, 211
(2013
). 346.
A.
Hobson
, “Teaching E = mc2: Mass without mass
,” Phys. Teach
. 43
, 80
(2005
). 347.
A.
Hobson
, “Electrons as field quanta: A better way to teach quantum physics in introductory general physics courses
,” Amer. J. Phys
. 73
, 630
(2005
). 348.
J.
Dunningham
and V.
Vedral
, “Nonlocality of a single particle
,” Phys. Rev. Lett
. 99
, 180404
(2007
). 349.
A.
Hobson
, Tales of the Quantum. Understanding Physics’ Most Fundamental Theory
(Oxford University Press
, Oxford
, 2017
).350.
H.
Semat
and J. R.
Albright
, Introduction to Atomic and Nuclear Physics
(Chapman & Hall
, London
, 1972
).351.
E.
Teller
, W.
Teller
, and W.
Talley
, Conversations on the Dark Secrets of Physics
(Springer Verlag
, New York
, 1991
). 352.
E. N.
Economou
, A Short Journey From Quarks to the Universe
(Springer Verlag
, Berlin
, 2011
). 353.
S.
Siddiqui
, Quantum Mechanics. A Simplified Approach
(CRC Press
, Boca Raton
, 2019
). 354.
D. W.
Jones
, “Waves and particles: Two essays on fundamental physics by roger G. newton
,” Contemp. Phys
. 56
, 402
(2015
). 355.
R. G.
Newton
, Thinking About Physics
(Princeton University Press
, Princeton
, 2021
).356.
T.
Banks
, Quantum Mechanics. An Introduction
(CRC Press
, Boca Raton
, 2018
).357.
P.
Carruthers
and M. M.
Nieto
, “Phase and angle variables in quantum mechanics
,” Rev. Mod. Phys
. 40
, 411
(1968
). 358.
M. O.
Scully
and S. F.
Jacobs
, “Coherence—a sticky subject
,” Appl. Opt
. 9
, 2414
(1970
). 359.
A. I.
Akhiezer
and S. V.
Peletminskii
, Theory of Fundamental Interactions
(Naukova Dumka
, Kyiv
, 1993
), in Russian.360.
S.
Weinberg
, The Quantum Theory of Fields, Vol. 1, Foundations
(Cambridge University Press
, Cambridge
, 1995
). 361.
S.
Weinberg
, The Quantum Theory of Fields, Vol. 2, Modern Applications
(Cambridge University Press
, Cambridge
, 1996
).362.
S.
Weinberg
, The Quantum Theory of Fields, Vol. 3, Supersymmetry
(Cambridge University Press
, Cambridge
, 2000
).363.
364.
O. I.
Akhiezer
and Yu. A.
Berezhnoi
, Theory of Nuclear Reactions
(Kharkivs’kyi Universytet im. Karazina
, Kharkiv
, 2011
), in Ukrainian.365.
S.
Capozziello
and M.
De Laurentis
, “Extended theories of gravity
,” Phys. Rep
. 509
, 167
(2011
). 366.
A.
Rocci
and T.
Van Riet
, “The quantum theory of gravitation, effective field theories, and strings: Yesterday and today
,” Eur. Phys. J. H
49
, 7
(2024
). 367.
I.
Newton
, The Principia: Mathematical Principles of Natural Philosophy
(University of California Press
, Oakland, California
, 1999
).368.
S.
Chandrasekhar
, Newton’s Principia for the Common Reader
(Oxford University Press
, Oxford
, 1995
). 369.
Isaac Newton. Philosophical Writings
, edited by, A.
Janiak
(Cambridge University Press
, Cambridge
, 2014
).370.
A.
Einstein
, Collected Papers, Vol. 6, The Berlin Years: Writings, 1914–1917
(
Princeton University Press
, Princeton
, 1997
).371.
M.
Faraday
, Experimental Researches in Electricity
(
J. M. Dent and Sons
, London
, 1922
).372.
R. D.
Tweney
, “Representing the electromagnetic field: How Maxwell’s mathematics empowered Faraday’s field theory
,” Sci. Educ
. 20
, 687
(2011
). 373.
J. C.
Maxwell
, The Scientific Papers of James Clerk Maxwell,
Vol. 1 (Dover Publications
,
New York
, 2011
).374.
P. A. M.
Dirac
, “The quantum theory of the emission and absorption of radiation
,” Proc. Roy. Soc. A
114
, 243
(1927
). 375.
P. A. M.
Dirac
, “The quantum theory of the electron
,” Proc. Roy. Soc. A
117
, 610
(1928
). 376.
P. A. M.
Dirac
, “The quantum theory of the electron: part II
,” Proc. Roy. Soc. A
118
, 351
(1928
). 377.
P. A. M.
Dirac
, “A theory of electrons and protons
,” Proc. Roy. Soc. A
126
, 360
(1930
). 378.
P. A. M.
Dirac
, “Quantised singularities in the electromagnetic field
,” Proc. Roy. Soc. A
133
, 60
(1931
). 379.
P. A. M.
Dirac
, “Relativistic quantum mechanics
,” Proc. Roy. Soc. A
136
, 453
(1932
). 380.
P. A. M.
Dirac
, “Discussion of the infinite distribution of electrons in the theory of the positron
,” Math. Proc. Cambr. Philos. Soc
. 30
, 150
(1934
). 381.
P. A. M.
Dirac
, “Relativistic wave equations
,” Proc. Roy. Soc. A
155
, 447
(1936
). 382.
P. A. M.
Dirac
, “Classical theory of radiating electrons
,” Proc. Roy. Soc. A
167
, 148
(1938
). 383.
P. A. M.
Dirac
, XI. “The relation between mathematics and physics
,” Proc. R. Soc. Edinburgh
59
, 122
(1940
). 384.
P. A. M.
Dirac
, “Forms of relativistic dynamics
,” Rev. Mod. Phys
. 21
, 392
(1949
). 385.
P. A. M.
Dirac
, “Gauge-invariant formulation of quantum electrodynamics
,” Canad. J. Phys
. 33
, 650
(1955
). 386.
G.
Farmelo
, The Strangest Man. The Hidden Life of Paul Dirac, Mystic of the Atom
(Basic Books
, New York
, 2009
).387.
P.
Jordan
and W.
Pauli
, “Zur quantenelektrodynamik ladungsfreier felder
,” Z. Phys.
47
, 151
(1928
). 388.
W.
Heisenberg
and W.
Pauli
, “Zur quantendynamik der wellenfelder
,” Z. Phys.
56
, 1
(1929
). 389.
W.
Heisenberg
and W.
Pauli
, “Zur quantentheorie der wellenfelder. II
,” Z. Phys.
59
, 168
(1930
). 390.
E.
Fermi
, “Quantum theory of radiation
,” Rev. Mod. Phys
. 4
, 87
(1932
). 391.
392.
V. B.
Berestetskii
, E. M.
Lifshits
, and L. P.
Pitaevskii
, Quantum Electrodynamics, Vol. 4, Course of Theoretical Physics
, 2nd ed (Pergamon Press
, Oxford
, 1982
).393.
P. A. M.
Dirac
, “The evolution of the physicist’s picture of nature
,” Sci. American
208
, 45
(1963
). 394.
J. A.
Wheeler
, “Curved empty space-time as the building material of the physical world: An assessment
,” Stud. Logic Found. Math
. 44
, 361
(1966
). 395.
D. R.
Topper
, “To reason by means of images: J. J. thomson and the mechanical picture of nature
,” Ann. Sci
. 37
, 31
(1980
). 396.
E.
McMullin
, “The origins of the field concept in physics
,” Phys. Perspect
. 4
, 13
(2002
). 397.
398.
C.
Kiefer
, “On the concept of law in physics
,” Eur. Rev
. 22
, S26
(2014
). 399.
400.
Single Charge Tunneling. Coulomb Blockade Phenomena in Nanostructures
, edited by, H.
Grabert
and M. H.
Devoret
(Plenum Press
, New York
, 1992
).401.
Quantum Tunnelling in Condensed Media,
edited by, Yu.
Kagan
and A. J.
Leggett
(North-Holland
, Amsterdam
, 1992
).402.
A. B.
Balantekin
and N.
Takigawa
, “Quantum tunneling in nuclear fusion
,” Rev. Mod. Phys
. 70
, 77
(1998
). 403.
K.
Kuwahata
, T.
Hama
, A.
Kouchi
, and N.
Watanabe
, “Signatures of quantum-tunneling diffusion of hydrogen atoms on water ice at 10 K
,” Phys. Rev. Lett
. 115
, 133201
(2015
). 404.
T.-Y.
Wu
and T.
Ohmura
, Quantum Theory of Scattering
(Prentice Hall
, Englewood Cliffs, NJ
, 1962
).405.
A. I.
Baz’
, Ya. B.
Zeldovich
, and A. M.
Perelomov
, Scattering, Reactions and Decays in Non-Relativistic Quantum Mechanics
(Nauka
, Moscow
, 1971
), in Russian. 406.
A. G.
Sitenko
, Scattering Theory
(Springer Verlag
, Berlin
, 1991
). 407.
M.
Kleber
, “Exact solutions for time-dependent phenomena in quantum mechanics
,” Phys. Rep
. 236
, 331
(1994
). 408.
A. B.
Migdal
, Nuclear Theory: The Quasiparticle Method
(W. A. Benjamin
, New York
, 1968
).409.
A. A.
Abrikosov
, L. P.
Gor’kov
, and I. Ye.
Dzyaloshinskii
, Methods of Quantum Field Theory in Statistical Physics
(Dover Publications
, New York
, 1975
).410.
A.
Damascelli
, Z.
Hussain
, and Z.-X.
Shen
, “Angle-resolved photoemission studies of the cuprate superconductors
,” Rev. Mod. Phys
. 75
, 473
(2003
). 411.
J. J.
Thomson
, “On electrical oscillations and the effects produced by the motion of an electrified sphere
,” Proc. Lond. Math. Soc.
s1-15
, 197
(1883
). 412.
A. E. H.
Love
, “Some illustrations of modes of decay of vibratory motions
,” Proc. Lond. Math. Soc
. s2-2
, 88
(1905
). 413.
A.
Bohm
, M.
Gadella
, and G. B.
Mainland
, “Gamow vectors and decaying states
,” Amer. J. Phys
. 57
, 1103
(1989
). 414.
A. E. H.
Love
and R. T.
Glazebrook
, “Sir horace lamb (1849–1934)
,” Obit. Not. Fell. Roy. Soc
. 1
, 374
(1935
). 415.
H.
Lamb
, “On a peculiarity of the wave-system due to the free vibrations of a nucleus in an extended medium
,” Proc. Lond. Math. Soc
. 32
, 208
(1900
). 416.
K.
Davey
, “Is mathematical rigor necessary in physics?
,” Brit. J. Phil. Sci
. 54
, 439
(2003
). 417.
C.
McCullough-Benner
, “Applying unrigorous mathematics: Heaviside’s operational calculus
,” Stud. Hist. Phil. Sci
. 91
, 113
(2022
). 418.
L. A.
Khalfin
, “Contribution to the decay theory of a quasi-stationary state
,” Zh. Éksp. Teor. Fiz
. 33
, 1371
, 1957
) [JETP 6, 1053 (1958)].419.
J.
Petzold
, “Wie gut gilt das exponentialgesetz beim α-zerfall?
,” Z. Phys
. 155
, 422
(1959
). 420.
R. G.
Winter
, “Evolution of a quasi-stationary state
,” Phys. Rev
. 123
, 1503
(1961
). 421.
E. H.
Hauge
and J. A.
Støvneng
, “Tunneling times: A critical review
,” Rev. Mod. Phys
. 61
, 917
(1989
). 422.
C. A. A.
de Carvalho
and H. M.
Nussenzveig
, “Time delay
,” Phys. Rep.
364
, 83
(2002
). 423.
H. G.
Winful
, “Tunneling time, the hartman effect, and superluminality: A proposed resolution of an old paradox
,” Phys. Rep
. 436
, 1
(2006
). 424.
J. G.
Muga
, Characteristic times in one-dimensional scattering
, in Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
), p. 31.425.
L. S.
Schulman
, Jump time and passage time: The duration of a quantum transition
, in Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
), p. 107. 426.
A. M.
Steinberg
, Experimental issues in quantum-mechanical time measurement
, in Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
), p. 333.427.
V. S.
Olkhovsky
, “On time as a quantum observable canonically conjugate to energy
,” Usp. Fiz. Nauk
181
, 859
(2011
) [Physics Usp.
54, 829 (2011)]. 428.
V. S.
Olkhovsky
, “On the multiple internal reflections of particles and photons tunneling in one, two, or three dimensions
,” Usp. Fiz. Nauk
184
, 1255
(2014
) [Physics Usp.
57, 1136 (2014)]. 429.
D.
Sokolovski
, Quantum traversal time, path integrals and “superluminal” tunnelling
, in Time in Quantum Mechanics
, 2nd ed., edited by, J. G.
Muga
, R. S.
Mayato
, and I. L.
Egusquiza
(Springer Verlag
, Berlin
, 2008
), p. 195
. 430.
M.
Büttiker
and R.
Landauer
, “Traversal time for tunneling
,” Phys. Rev. Lett
. 49
, 1739
(1982
). 431.
M.
Büttiker
, “Larmor precession and the traversal time for tunneling
,” Phys. Rev. B
27
, 6178
(1983
). 432.
R.
Landauer
, “Barrier traversal time
,” Nature
341
, 567
(1989
). 433.
Advances in Chemical Physics
, Vol. LXXXVIII, Chemical Dynamics at Low Temperatures, edited by, V. A.
Benderskii
, D. E.
Makarov
, and C. A.
Wight
(John Wiley and Sons
, New York
, 1994
).434.
T.
Tanizawa
, “Quantum tunneling rate in oscillating fields
,” J. Phys. Soc. Jpn
. 65
, 3157
(1996
). 435.
L. S.
Schulman
, A.
Ranfagni
, and D.
Mugnai
, “Characteristic scales for dominated time evolution
,” Phys. Scr
. 49
, 536
(1994
). 436.
C. G.
Callan
, Jr., and S.
Coleman
, “Fate of the false vacuum: II. first quantum corrections
,” Phys. Rev. D
16
, 1762
(1977
). 437.
A. M.
Polyakov
, “Quark confinement and topology of gauge theories
,” Nucl. Phys
. 120
, 429
(1977
). 438.
R.
Landauer
and Th.
Martin
, “Time delay in wave packet tunneling
,” Solid State Commun
. 84
, 115
(1992
). 439.
Y.
Aharonov
, N.
Erez
, and B.
Reznik
, “Superoscillations and tunneling times
,” Phys. Rev. A
65
, 052124
(2002
). 440.
P. C. W.
Davies
, “Quantum tunneling time
,” Amer. J. Phys.
73
, 23
(2005
). 441.
G.
Ordonez
and N.
Hatano
, “Existence and nonexistence of an intrinsic tunneling time
,” Phys. Rev. A
79
, 042102
(2009
). 442.
D.
Sokolovski
and E.
Akhmatskaya
, “Superluminal paradox” in wave packet propagation and its quantum mechanical resolution
,” Ann. Phys
. 339
, 307
(2013
). 443.
A.
Enders
and G.
Nimtz
, “Evanescent-mode propagation and quantum tunneling
,” Phys. Rev. E
48
, 632
(1993
). 444.
A.
Ranfagni
, P.
Fabeni
, G. P.
Pazzi
, and D.
Mugnai
, “Anomalous pulse delay in microwave propagation: A plausible connection to the tunneling time
,” Phys. Rev. E
48
, 1453
(1993
). 445.
G.
Nimtz
, “On superluminal tunneling
,” Progr. Quantum Electron.
27
, 417
(2003
). 446.
G.
Nimtz
and A. A.
Stahlhofen
, “Universal tunneling time for all fields
,” Ann. der Phys
. 17
, 374
(2008
). 447.
G.
Nimtz
, “On virtual phonons, photons, and electrons
,” Found. Phys
. 39
, 1346
(2009
). 448.
A.
Einstein
, Collected Papers
, Vol. 2, The Swiss Years: Writings, 1900–1909 (Princeton University Press
, Princeton
, 1989
).449.
A. M.
Steinberg
, P. G.
Kwiat
, and R. Y.
Chiao
, “Measurement of the single-photon tunneling time
,” Phys. Rev. Lett
. 71
, 708
(1993
). 450.
R.
Landauer
, “Light faster than light?
,” Nature
365
, 692
(1993
). 451.
R. Y.
Chiao
and A. M.
Steinberg
, Tunneling times and superluminality
, in Progress in Optics
, XXXVII, edited by, E.
Wolf
(North-Holland
, Amsterdam
, 1997
), Chap. 6, p. 345. 452.
S.
Longhi
, P.
Laporta
, M.
Belmonte
, and E.
Recami
, “Measurement of superluminal optical tunneling times in double-barrier photonic band gaps
,” Phys, Rev. E
65
, 046610
(2002
). 453.
M.
Büttiker
and S.
Washburn
, “Ado about nothing much?
,” Nature
422
, 271
(2003
). 454.
R. S.
Dumont
and T.
Rivlin
, “Superluminal tunneling times without superluminal signaling: Fading of the MacColl-hartman effect at early times
,” Phys. Rev. A
107
, 052212
(2023
). 455.
T. E.
Hartman
, “Tunneling of a wave packet
,” J. Appl. Phys
. 33
, 3427
(1962
). 456.
R. W.
Boyd
, D. J.
Gauthier
, and P.
Narum
, Causality in superluminal pulse propagation
, in Time in Quantum Mechanics
, edited by, J. G.
Muga
, A.
Ruschhaupt
, and A.
del Campo
(Springer Verlag
, Berlin
, 2009
), Vol. 2, p. 175. 457.
A.
Sommerfeld
, “Über die fortpflanzung des lichtes in dispergierenden medien
,” Ann. der Phys
. 349
, 177
(1914
). 458.
A.
Sommerfeld
, “About the Propagation of Light in Dispersive Media, in Wave Propogation and Group Velocity
,” (Academic Press
, Amsterdam
, 1960
), p. 17.459.
460.
D.
Villegas
, F. A.
Horta-Rangel
, T.
González
, I.
Quirós
, R.
Pérez-Álvarez
, and F.
de León-Pérez
, “Tunneling times in a taut string
,” Eur. J. Phys
. 41
, 045001
(2020
). 461.
S.
Yusofsani
and M.
Kolesik
, “Quantum tunneling time: Insights from an exactly solvable model
,” Phys. Rev. A
101
, 052121
(2020
). 462.
W.
Pauli
, Die Allgemeinen Prinzipien der Wellenmechanik. Neu Herausgegeben und mit Historischen Anmerkungen Versehen von Norbert Straumann
(Springer Verlag
, Berlin
, 1990
). 463.
W.
Pauli
, General Principles of Quantum Mechanics
(Springer Verlag
, Berlin
, 1980
). 464.
J.
Hilgevoord
, “The uncertainty principle for energy and time
,” Amer. J. Phys.
64
, 1451
(1996
). 465.
K. K.
Thornber
, T. C.
McGill
, and C. A.
Mead
, “The tunneling time of an electron
,” J. Appl. Phys
. 38
, 2384
(1967
). 466.
D. L.
Mills
and E.
Burstein
, “Polaritons: The electromagnetic modes of media
,” Rep. Prog. Phys
. 37
, 817
(1974
). 467.
R. I.
Shekhter
, Yu.
Galperin
, L. Y.
Gorelik
, A.
Isacsson
, and M.
Jonson
, “Shuttling of electrons and cooper pairs
,” J. Phys.: Condens. Matter
15
, R441
(2003
). 468.
W. A.
Harrison
, “Tunneling from an independent particle point of view
,” Phys. Rev
. 123
, 85
(1961
). 469.
J.
Bardeen
, “Tunneling from a many-particle point of view
,” Phys. Rev. Lett
. 6
, 57
(1961
). 470.
R.
Ray
and G. D.
Mahan
, “Dynamical image charge theory
,” Phys. Lett. A
42
, 301
(1972
). 471.
M.
Šunjić
, G.
Toulouse
, and A. A.
Lucas
, “Dynamical corrections to the image potential
,” Solid State Commun
. 11
, 1629
(1972
). 472.
J.
Heinrichs
, “Response of metal surfaces to static and moving point charges and to polarizable charge distributions
,” Phys. Rev. B
8
, 1346
(1973
). 473.
P. M.
Echenique
, R. H.
Ritchie
, N.
Barberan
, and J. C.
Inkson
, “Semiclassical image potential at a solid surface
,” Phys. Rev. B
23
, 6486
(1981
). 474.
C.
Shah
and G.
Mukhopadhyay
, “On dynamic image potential
,” Solid State Commun
. 48
, 1035
(1983
). 475.
P. M.
Echenique
, A.
Gras-Marti
, J. R.
Manson
, and R. H.
Ritchie
, “Image potential for a tunneling electron
,” Phys. Rev. B
35
, 7357
(1987
). 476.
F.
Sols
and R. H.
Ritchie
, “Self-energy of a charge near an interface
,” Surf. Sci
. 194
, 275
(1988
). 477.
A. M.
Gabovich
, V. M.
Rozenbaum
, and A. I.
Voitenko
, “Importance of the plasmon damping for the dynamical image forces
,” Phys. Status Solidi B
214
, 29
(1999
). 478.
A. M.
Gabovich
and A. I.
Voitenko
, “Dynamic image forces near a metal surface and the point-charge motion
,” Eur. J. Phys
. 33
, 1289
(2012
). 479.
R. A.
Young
, “Space-time formulation for the dynamic image potential: Application to photo-assisted field emission
,” Solid State Commun
. 45
, 263
(1983
). 480.
B. N. J.
Persson
and A.
Baratoff
, “Self-consistent dynamic image potential
,” Phys. Rev. B
38
, 9616
(1988
). 481.
B. G. R.
Rudberg
and M.
Jonson
, “Tunneling in a self-consistent dynamic image potential
,” Phys. Rev. B
43
, 9358
(1991
). 482.
P. M.
Echenique
, F.
J
, G.
de Abajo
, V. H.
Ponce
, and M. E.
Uranga
, “Dynamic screening of ions in solids
,” Nucl. Instrum. Meth. B
96,
583
(1995
). 483.
M.
Jonson
, “The dynamical image potential for tunneling electrons
,” Solid State Commun
. 33
, 743
(1980
). 484.
R.
Reifenberger
, D. L.
Haavig
, and C. M.
Egert
, “Numerical transmission probabilities and the oscillatory photo-induced field emission current: Static and dynamic image charge effects
,” Surf. Sci
. 109
, 276
(1981
). 485.
J.-W.
Wu
and G. D.
Mahan
, “Dynamic image potentials and field emission
,” Phys. Rev. B
28
, 4839
(1983
). 486.
A. M.
Gabovich
, “Dynamic image forces as a cause of Fowler—Nordheim law violation in field emission
,” Fiz. Tverd. Tela
25
, 1885
(1983
) [Sov. Phys. Solid State 25, 1088 (1983)].487.
A. I.
Voitenko
, A. M.
Gabovich
, and V. M.
Rozenbaum
, “Effect of dynamic character of image forces on field emission
,” Zh. Éksp. Teor. Fiz
. 87
, 1064
(1984
) [Sov. Phys. JETP 60, 608 (1984)].488.
N.
Klipa
and M.
Šunjić
, “Dynamical effective potentials in electron tunneling: Path-integral study
,” Phys. Rev. B
52
, 12408
(1995
). 489.
H.
Ness
and A. J.
Fisher
, “Dynamical effective potential for tunneling: An exact matrix method and a path-integral technique
,” Appl. Phys. A
66
, Suppl. 1
, S919
(1998
). 490.
H.
Ness
and A. J.
Fisher
, “A matrix method for treating the coupling between an electron and a surface plasmon: A dynamical image potential in model tunnelling junctions
,” J. Phys.: Condens. Matter
10
, 3697
(1998
). 491.
G.
Barton
, “Some surface effects in the hydrodynamic model of metals
,” Rep. Prog. Phys
. 42
, 963
(1979
). 492.
E.
Fermi
, Un metodo statistico per la determinazione di alcune prioprieta dell’Atomo
, in Collected Papers (Note e Memorie)
, Vol. I, Italy, 1921–1938 (The University of Chicago Press
, Chicago
, 1962
), p. 278.493.
L. H.
Thomas
, “The calculation of atomic fields
,” Math. Proc. Cambr. Philos. Soc
. 23
, 542
(1927
). 494.
J.
Callaway
and N. H.
March
, “Density Functional Methods: Theory and Applications
,” in Solid State Physics. Advances in Research and Applications
, Vol. 38, edited by, H.
Ehrenreich
and D.
Turnbull
(Academic Press
, Orlando
, 1984
), p. 135. 495.
496.
R. H.
Good
, Jr. and E. W.
Müller
, Field emission
, in Encyclopedia of Physics
, Vol. 21, Electron-Emission Gas Discharges I/Elektronen-Emission Gasentladungen I, edited by, S.
Flügge
(Springer Verlag
, Berlin
, 1956
), p. 176. 497.
Z. A.
Weinberg
and A.
Hartstein
, “Photon assisted tunneling from aluminum into silicon dioxide
,” Solid State Commun
. 20
, 179
(1976
). 498.
C. A.
Spindt
, I.
Brodie
, L.
Humphrey
, and E. R.
Westerberg
, “Physical properties of thin-film field emission cathodes with molybdenum cones
,” J. Appl. Phys
. 47
, 5248
(1976
). 499.
A.
Hartstein
, Z. A.
Weinberg
, and D. J.
DiMaria
, “Experimental test of the quantum-mechanical image-force theory
,” Phys. Rev. B
25
, 7174
(1982
). 500.
A.
Hartstein
and Z. A.
Weinberg
, “Unified theory of internal photoemission and photon-assisted tunneling
,” Phys. Rev. B
20
, 1335
(1979
). 501.
P.
Guéret
, E.
Marclay
, and H.
Meier
, “Investigation of possible dynamic polarization effects on the transmission probability of n-GaAs/AlxGa1xAs/n-GaAs tunnel barriers
,” Solid State Commun.
68
, 977
(1988
). 502.
P.
Guéret
, E.
Marclay
, and H.
Meier
, “Experimental observation of the dynamical image potential in extremely low GaAs/AlxGa1–xAs/GaAs tunnel berriers
,” Appl. Phys. Lett
. 53
, 1617
(1988
). 503.
C. D.
Child
, “Discharge from hot CaO
,” Phys. Rev
. 32
, 492
(1911
). 504.
I.
Langmuir
, “The effect of space charge and residual gases on thermionic currents in high vacuum
,” Phys. Rev
. 2
, 450
(1913
). 505.
M. D.
Gabovich
, “Influence of the space charge in propagation of intensive charge-particle beams
,” Usp. Fiz. Nauk
56,
215
(1955
). 506.
D. J.
BenDaniel
and C. B.
Duke
, “Space-charge effects on electron tunneling
,” Phys. Rev
. 152
, 683
(1966
). 507.
J. B.
Scott
, “Extension of langmuir space-charge theory into the accelerating field range
,” J. Appl. Phys
. 52
, 4406
(1981
). 508.
S.
Bhattacharjee
, A.
Vartak
, and V.
Mukherjee
, “Experimental study of space-charge-limited flows in a nanogap
,” Appl. Phys. Lett
. 92
, 191503
(2008
). 509.
K. L.
Jensen
, “Space charge effects in field emission: Three dimensional theory
,” J. Appl. Phys
. 107
, 014905
(2010
). 510.
A.
Rokhlenko
, K. L.
Jensen
, and J. L.
Lebowitz
, “Space charge effects in field emission: One dimensional theory
,” J. Appl. Phys
. 107
, 014904
(2010
). 511.
P.
Zhang
, Y. S.
Ang
, A. L.
Garner
, A.
Valfells
, J. W.
Luginsland
, and L. K.
Ang
, “Space-charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects
,” J. Appl. Phys
. 129
, 100902
(2021
). 512.
T. A.
de Assis
, F. F.
Dall’Agnol
, and R. G.
Forbes
, “Field emitter electrostatics: A review with special emphasis on modern high-precision finite-element modelling
,” J. Phys.: Condens. Matter
34
, 493001
(2022
). 513.
L. I.
Breen
and A. L.
Garner
, “Collisional space-charge-limited current with monoenergetic velocity: From child-langmuir to mott-gurney
,” Phys. Plasmas
31
, 032102
(2024
). 514.
A. L.
Garner
, G.
Meng
, Y.
Fu
, A. M.
Loveless
, R. S.
Brayfield
, and A. M.
Darr
, “Transitions between electron emission and gas breakdown mechanisms across length and pressure scales
,” J. Appl. Phys
. 128
, 210903
(2020
). 515.
L. I.
Breen
, A. M.
Loveless
, A. M.
Darr
, K. L.
Cartwright
, and A. L.
Garner
, “The transition from feld emission to collisional space-charge limited current with nonzero initial velocity
,” Sci. Rep
. 13
, 14505
(2023
). 516.
Mathematics and Science
, edited by, R. E.
Mickens
(World Scientific
, Singapore
, 1990
).517.
E. P.
Wigner
, The unreasonable effectiveness of mathematics in the natural sciences
, in Mathematics and Science
, edited by, R. E.
Mickens
(World Scientific
, Singapore
, 1990
), p. 291. 518.
A.
Zee
, The effectiveness of mathematics in fundamental physics
, in Mathematics and Science
, edited by, R. E.
Mickens
(World Scientific
, Singapore
, 1990
), p. 307.519.
N. F.
Mott
and H.
Jones
, The Theory or the Properties of Metals and Alloys
(University Press
, Oxford
, 1936
).520.
J.
Bardeen
, “Theory of the work function. II. The surface double layer
,” Phys. Rev
. 49
, 653
(1936
). 521.
N. D.
Lang
, “The density-functional formalism and the electronic structure of metal surfaces
,” Solid State Phys
. 28
, 225
(1973
).