Carbon honeycombs (CHs) are new carbon cellular structures, very promising in many respects, in particular, for high-capacity storage of various materials, especially in gaseous and liquid forms. In this study, we report a strong uptake of carbon dioxide kept inside carbon honeycomb matrices up to temperatures about three times higher as compared with CO2 desorption at ≈ 90 K from flat solid surfaces in vacuum where we conduct our high-energy electron diffraction experiments. Desorption of CO2 from CH matrices upon heating exhibits non-monotone behavior, which is ascribed to carbon dioxide release from CH channels of different sizes. It is shown that modeling of CO2 uptake, storage, and redistribution in the thin CH channels of certain types and orientations upon heating can explain experimental observations.

1.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
, “
C60: Buckminsterfullerene
,”
Nature
318
,
162
(
1985
).
2.
S.
Iijima
, “
Helical microtubules of graphitic carbon
,”
Nature
354
,
56
(
1991
).
3.
T.
Lenosky
,
X.
Gonze
,
M.
Teter
, and
V.
Elser
, “
Energetics of negatively curved graphitic carbon
,”
Nature
355
,
333
(
1992
).
4.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
, “
Electric field effect in atomically thin carbon films
,”
Science
306
,
666
(
2004
).
5.
A.
Hirsch
, “
The era of carbon allotropes
,”
Nat. Mater.
9
,
868
(
2010
).
6.
V.
Georgakilas
,
J. A.
Perman
,
J.
Tucek
, and
R.
Zboril
, “
Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures
,”
Chem. Rev.
115
,
4744
(
2015
).
7.
N. V.
Krainyukova
, and
E. N.
Zubarev
, “
Carbon honeycomb high-capacity storage for gaseous and liquid species
,”
Phys. Rev. Lett.
116
,
055501
(
2016
).
8.
N. V.
Krainyukova
, “
Capturing gases in carbon honeycomb
,”
J. Low Temp. Phys.
187
,
90
(
2017
).
9.
Z.
Zhang
,
A.
Kutana
,
Y.
Yang
,
N. V.
Krainyukova
,
E. S.
Penev
, and
B. I.
Yakobson
, “
Nanomechanics of carbon honeycomb cellular structures
,”
Carbon
113
,
26
(
2017
).
10.
D. G.
Diachenko
, and
N. V.
Krainyukova
, “
Structural variety and stability of carbon honeycomb cellular structures
,”
Fiz. Nizk. Temp.
48
,
259
(
2022
) [
Low Temp. Phys.
48, 232 (2022)].
11.
N. V.
Krainyukova
,
B.
Kuchta
,
L.
Firlej
, and
P.
Pfeifer
, “
Absorption of atomic and molecular species in carbon cellular structures (review article)
,”
Fiz. Nizk. Temp.
46
,
271
(
2020
) [
Low Temp. Phys.
46, 219 (2020)].
12.
N. V.
Krainyukova
, “
Evidence for high saturation of porous amorphous carbon films by noble gases
,”
Fiz. Nizk. Temp.
35
,
385
(
2009
) [
Low Temp. Phys.
35, 294 (2009)].
13.
N. V.
Krainyukova
,
Y. S.
Bogdanov
, and
B.
Kuchta
, “
Absorption–desorption of carbon dioxide in carbon honeycombs at elevated temperatures
,”
Fiz. Nizk. Temp.
45
,
371
(
2019
) [
Low Temp. Phys.
45, 325 (2019)].
14.
Q.
Yuan
,
H.
Hu
,
J.
Gao
,
F.
Ding
,
Z.
Liu
, and
B. I.
Yakobson
, “
Upright standing graphene formation on substrates
,”
J. Amer. Chem. Soc.
133
,
16072
(
2011
).
15.
T.
Kawai
,
S.
Okada
,
Y.
Miyamoto
, and
A.
Oshiyama
, “
Carbon three-dimensional architecture formed by intersectional collision of graphene patches
,”
Phys. Rev. B
72
,
035428
(
2005
).
16.
B. E.
Warren
,
X-Ray Diffraction
(
Addison-Wesley, Reading
,
MA
,
1969
).
17.
N. V.
Krainyukova
,
V. O.
Hamalii
,
A. V.
Peschanskii
,
A. I.
Popov
, and
E. A.
Kotomin
, “
Low temperature structural transformations on the (001) surface of SrTiO3 single crystals
,”
Fiz. Nizk. Temp.
46
,
877
(
2020
) [
Low Temp. Phys.
46, 740 (2020)].
18.
Physics of Cryocrystals
, edited by
V. G.
Manzhelii
and
Yu. A.
Freiman
(
American Institute of Physics
,
1997
).
19.
N.
Krainyukova
, and
B.
Kuchta
, “
Hopping precession of molecules in crystalline carbon dioxide films
,”
J. Low Temp. Phys.
187
,
148
(
2017
).
20.
E.
Billig
,
M.
Decker
,
W.
Benzinger
,
F.
Ketelsen
,
P.
Pfeifer
,
R.
Peters
,
D.
Stolten
, and
D.
Thränae
, “
Non-fossil CO2 recycling—The technical potential for the present and future utilization for fuels in Germany
,”
J. CO2 Utiliz.
30
,
130
(
2019
).
You do not currently have access to this content.