New results on the study of radiation effects in solid nitrogen and N2-doped Ne matrix are presented, with a focus on the so-called γ-line origin. The irradiation was carried out in dc regime with an electron beam of subthreshold energy. The relaxation dynamics was monitored by emission spectroscopy: cathodoluminescence (CL) and nonstationary luminescence (NsL), along with current activation spectroscopy. Thermally stimulated luminescence (TSL) and exoelectron emission (TSEE) of pure nitrogen and N2 in the Ne matrix were measured in a correlated manner. Three emission bands were recorded in the NIR CL spectra of solid N2: 794, 802, and 810 nm. The band at 810 nm was detected for the first time. These three bands are characterized by similar behavior and form molecular series with spacing between adjacent vibrational energy levels of the ground state of 125 and 123 cm−1. These data cast doubt on the recently made assumption that the γ-line is attributed to the emission of the nitrogen anion N [R. E. Boltnev, I. B. Bykhalo, I. N. Krushinskaya et al. Phys. Chem. Chem. Phys. 18, 16013 (2016)]. The processes of electron attachment and neutralization of positively charged species are discussed. It has been established that the γ-line in the TSL spectra of pure nitrogen and N2-doped Ne matrix correlates with TSEE currents and recombination emission of O+, N 2 +, and N 4 + ions, which indicates its connection with the neutralization reaction. The measurement of NsL supported this conclusion. A new possible assignment of the γ-line and its satellites to the emission of tetranitrogen N4 is discussed.

1.
R. N.
Clark
,
R.
Carlson
,
W.
Grundy
, and
K.
Noll
,
Observed ices in the Solar System
, in:
The Science of Solar System Ices
, edited by,
M. S.
Gudipati
and
J.
Castillo-Rogez
,
Astrophysics and Space Science Library
(
Springer
,
New York
,
2012
), Vol.
356
, p.
3
.
2.
R. L.
Hudson
and
M. H.
Moore
,
Astrophys. J.
568
,
1095
(
2002
).
3.
C. S.
Jamieson
and
R. I.
Kaiser
,
Chem. Phys. Lett.
440
,
98
(
2007
).
4.
Y.-J.
Wu
,
C. Y. R.
Wu
,
S.-L.
Chou
,
M.-Y.
Lin
,
H.-C.
Lu
,
J.-I.
Lo
, and
B.-M.
Cheng
,
Astrophys. J.
746
,
175
(
2012
).
5.
Ph.
Boduch
,
A.
Domaracka
,
D.
Fulvio
,
T.
Langlinay
,
X. Y.
Lv
,
M. E.
Palumbo
,
H.
Rothard
, and
G.
Strazzulla
,
Astron. Astrophys. A
544
,
A30
(
2012
).
6.
A. L. F.
de Barros
,
E. F.
da Silveira
,
A.
Bergantini
,
H.
Rothard
, and
P.
Boduch
,
Astrophys. J.
810
,
156
(
2015
).
7.
C. K.
Materese
,
D. P.
Cruikshank
,
S. A.
Sandford
,
H.
Imanaka
, and
M.
Nuevo
,
Astrophys. J.
812
150
(
2015
).
8.
M. E.
Palumbo
,
G. A.
Baratta
,
D.
Fulvio
,
M.
Garozzo
,
O.
Gomis
,
G.
Leto
,
F.
Spinella
, and
G.
Strazzulla
,
J. Phys.: Conf Ser.
101
,
012002
(
2008
).
9.
M. T.
Nguyen
,
Coord. Chem. Rev.
244
,
93
(
2003
).
10.
T.
Brinck
,
M.
Bittererova
, and
H.
Ostmark
, Electronic structure calculations as a tool in the quest for experimental verification of N4, in Energetic materials, chap. 1 Decomposition, crystal and molecular properties, edited by,
P. A.
Politzer
and
J. S.
Murray
,
Theoretical and Computational Chemistry
(
Elsevier
,
2003
), Vol. 12, Chap. 15, p.
421
.
11.
P. C.
Samartzis
and
A. M.
Wodtke
,
Inter. Rev. Phys. Chem.
25
,
527
(
2006
).
12.
V. E.
Zarko
,
Combustion, Explos. Shock Waves
46
,
121
(
2010
).
13.
E.
Savchenko
,
I.
Khyzhniy
, and
V.
Bondybey
,
Fiz. Nizk. Temp.
45
,
1144
(
2019
) [
Low Temp. Phys.
45, 975 (2019)].
14.
M.
Peyron
and
H. P.
Broida
,
J. Chem. Phys.
30
,
1304
(
1959
).
15.
V. V.
Khmelenko
,
I. N.
Krushinskaya
,
R. E.
Boltnev
, and
D. M.
Lee
,
J. Phys. Conf. Ser.
400
,
012030
(
2012
).
16.
V. V.
Khmelenko
,
A. A.
Pelmenev
,
I. N.
Krushinskaya
,
I. B.
Bykhalo
,
R. E.
Boltnev
, and
D. M.
Lee
,
J. Low Temp.Phys.
171
,
302
(
2013
).
17.
V. V.
Khmelenko
,
I. N.
Krushinskaya
,
R. E.
Boltnev
,
I. B.
Bykhalo
,
A. A.
Pelmenev
, and
D. M.
Lee
,
Fiz. Nizk. Temp.
38
,
871
(
2012
) [
Low Temp. Phys.
38, 688 (2012)].
18.
R. E.
Boltnev
,
I. B.
Bykhalo
,
I. N.
Krushinskaya
,
A. A.
Pelmenev
,
V. V.
Khmelenko
,
S.
Mao
,
A.
Meraki
,
S.
Wilde
,
P. T.
McColgan
, and
D. M.
Lee
,
J. Phys. Chem. A
119
,
2438
(
2015
).
19.
R. E.
Boltnev
,
I. B.
Bykhalo
,
I. N.
Krushinskaya
,
A. A.
Pelmenev
,
S.
Mao
,
A.
Meraki
,
P. T.
McColgan
,
D. M.
Lee
, and
V. V.
Khmelenko
,
Phys. Chem. Chem. Phys.
18
,
16013
(
2016
).
20.
E. M.
Horl
,
J. Molec. Spectrosc.
3
,
425
(
1959
).
21.
M.
Peyron
,
E. M.
Horl
,
H. W.
Brown
, and
H. P.
Broida
,
J. Chem. Phys.
30
,
1304
(
1959
).
22.
L. J.
Shoen
and
H. P.
Broida
,
J. Chem. Phys.
32
,
1184
(
1960
).
23.
R. E.
Boltnev
,
I. B.
Bykhalo
,
I. N.
Krushinskaya
,
A. A.
Pelmenev
,
V. V.
Khmelenko
,
D. M.
Lee
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
E. V.
Savchenko
,
A. N.
Ponomaryov
,
G. B.
Gumenchuk
, and
V. E.
Bondybey
,
Fiz. Nizk. Temp.
39
,
580
(
2013
) [
Low Temp. Phys.
39, 451 (2013)].
24.
R.
Tian
and
J.
Michl
,
Faraday Discuss. Chem. Soc.
86
,
113
(
1988
).
25.
M. A.
Allodi
,
R. A.
Baragiola
,
G. A.
Baratta
,
M. A.
Barucci
,
G. A.
Blake
,
J. R.
Brucato
,
C.
Contreras
,
S. H.
Cuylle
,
Ph.
Boduch
,
D.
Fulvio
,
M. S.
Gudipati
,
S.
Ioppolo
,
Z.
Kanuchova
,
A.
Lignell
,
H.
Linnartz
,
M. E.
Palumbo
,
U.
Raut
,
H.
Rothard
,
F.
Salama
,
E. V.
Savchenko
,
E.
Sciamma-O'Brien
, and
G.
Strazzulla
,
Space Sci. Rev.
180
,
101
(
2013
).
26.
I.
Khyzhniy
,
E.
Savchenko
,
S.
Uyutnov
,
G.
Gumenchuk
,
A.
Ponomaryov
, and
V.
Bondybey
,
Radiat. Meas.
45
,
353
(
2010
).
27.
V. G.
Storchak
,
D. G.
Eshchenko
,
J. H.
Brewer
,
S. P.
Cottrell
,
S. F. J.
Cox
,
E.
Karlsson
, and
R. W.
Wappling
,
J. Low Temp. Phys.
122
,
527
(
2001
).
28.
K. S.
Song
and
R. T.
Williams
,
Self-Trapped Excitons
(
Springer-Verlag
,
Berlin
,
1996
), p.
404
.
29.
E. V.
Savchenko
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
A. N.
Ponomaryov
,
G. B.
Gumenchuk
, and
V. E.
Bondybey
,
Procedia Phys.
76
,
111
(
2015
).
30.
E. V.
Savchenko
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
M. A.
Bludov
,
A. P.
Barabashov
,
G. B.
Gumenchuk
, and
V. E.
Bondybey
,
J. Lumin.
191
,
73
(
2017
).
31.
O.
Oehler
,
D. A.
Smith
, and
K.
Dressler
,
J. Chem. Phys.
66
,
2097
(
1977
).
32.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
A.
Barabashov
,
G.
Gumenchuk
,
A.
Ponomaryov
, and
V.
Bondybey
,
Phys. Status Solidi C
12
,
49
(
2015
).
33.
M. H.
Moore
and
R. L.
Hudson
,
Icarus
161
,
486
(
2003
).
34.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
,
G.
Gumenchuk
, and
V.
Bondybey
,
Radiat. Meas.
90 C
,
1
2016
.
35.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
,
G.
Gumenchuk
, and
V.
Bondybey
,
Phys. Status Solidi β
253
,
2115
(
2016
).
36.
T. M.
Klapotke
,
C. A.
Deakyne
, and
J. F.
Liebman
,
Struct. Chem.
22
,
189
(
2011
).
38.
R. D.
Cowan
,
C. F.
Fischer
,
J. E.
Hansen
, and
V.
Kempter
,
J. Phys. B
30
,
1457
(
1997
).
39.
A.
Lofthus
and
P. H.
Krupenie
, “
The spectrum of molecular nitrogen
.
J. Phys. Chem. Ref Data
6
,
113
(
1977
).
40.
N.
Weinberger
,
J.
Postler
,
P.
Scheier
, and
O.
Echt
,
J. Phys. Chem. C
121
,
10632
(
2017
).
41.
C.
Ning
and
Y.
Lu
,
J. Physi. Chem. Ref. Data
51
,
021502
(
2022
).
42.
E. V.
Savchenko
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
A. P.
Barabashov
,
G. B.
Gumenchuk
,
M. K.
Beyer
,
A. N.
Ponomaryov
, and
V. E.
Bondybey
,
J. Phys. Chem. A
119
,
2475
(
2015
).
43.
H.-P.
Jia
and
E. A.
Quadrelli
,
Chem. Soc. Rev.
43
,
547
(
2014
).
44.
R. J.
Loveland
,
P. G.
Le Comber
, and
W. E.
Spear
,
Phys. Rev. B
6
,
3121
(
1972
).
45.
V.
Zhaunerchyk
,
W. D.
Geppert
,
E.
Vigren
,
M.
Hamberg
,
M.
Danielsson
,
M.
Larsson
,
R. D.
Thomas
,
M.
Kaminska
, and
F.
Osterdahl
,
J. Chem. Phys.
127
,
014305
(
2007
).
46.
V. E.
Bondybey
,
M.
Rasanen
, and
A.
Lammers
,
Annu. Rep. Sect. C
95
,
331
(
1999
).
47.
V. A.
Apkarian
and
N.
Schwentner
,
Chem. Rev.
99
,
1481
(
1999
).
48.
F.
Cacace
,
G.
d
. Petris, and A. Troiani,
Science
295
,
480
(
2002
).
50.
E.
Rennie
and
P.
Mayer
,
J. Chem. Phys.
120
,
10561
(
2004
).
51.
L. B.
Knight
,
K. D.
Johannessen
,
D. C.
Cobranchi
,
E. A.
Earl
,
D.
Feller
, and
E. R.
Davidson
,
J. Chem. Phys.
87
,
885
(
1987
).
52.
W. E.
Thompson
and
M. E.
Jacox
,
J. Chem. Phys.
93
,
3856
(
1990
).
53.
M. E.
Jacox
,
Chem. Soc. Rev.
31
,
108
(
2002
).
54.
NIST Chemistry WebBook
55.
E. V.
Savchenko
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
M. A.
Bludov
,
G. B.
Gumenchuk
, and
V. E.
Bondybey
,
Nucl. Instr. Meth. B
374
,
35
(
2016
).
56.
J. R.
Peterson
,
A.
Le Padellec
,
H.
Danared
,
G. H.
Dunn
,
M.
Larsson
,
A.
Larson
,
R.
Peverall
,
C.
Stromholm
,
S.
Rosen
,
M.
af Ugglas
, and
W. J.
van der Zande
,
J. Chem. Phys.
108
,
1978
(
1998
).
57.
J.
Barber
,
D. E.
Hof
,
C. A.
Meserole
, and
D. J.
Funk
,
J. Phys. Chem. A
110
,
3853
(
2006
).
58.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
,
A.
Barabashov
,
G.
Gumenchuk
, and
V.
Bondybey
,
J. Low Temp. Phys.
187
,
62
(
2017
).
59.
P. T.
McColgan
,
A.
Meraki
,
R. E.
Boltnev
,
D. M.
Lee
, and
V. V.
Khmelenko
,
J. Phys. Chem. A
121
,
9045
(
2017
).
60.
V. F.
Elesin
,
N. N.
Degtyarenko
,
K. S.
Pazhitnykh
, and
N. V.
Matveev
,
Russ. Phys. J.
52
,
1224
(
2009
).
61.
M.
Bittererova
,
H.
Ostmark
, and
T.
Brinck
,
Chem. Phys. Lett.
347
,
220
(
2001
).
62.
A. A.
Korkin
,
A.
Balkova
,
R. J.
Bartlett
,
R. J.
Boyd
, and
P. V.
Schleyer
,
J. Phys. Chem.
100
,
5702
(
1996
).
63.
M.
Bittererova
,
T.
Brinck
, and
H.
Ostmark
,
J. Phys. Chem. A
104
,
11999
(
2000
).
64.
M. T.
Nguyen
,
T. L.
Nguyen
,
A. M.
Mebel
, and
R.
Flammang
,
J. Phys. Chem. A
107
,
5452
(
2003
).
65.
66.
Q.
Lang
,
Q.
Lin
,
P.
Wang
,
Y.
Xu
, and
M.
Lu
,
Front. Chem.
10
,
993036
(
2022
).
67.
O. V.
Mikhailov
,
Int. J. Mol. Sci.
23
,
2841
(
2022
).
You do not currently have access to this content.