Thermomagnetoelectric effect for the dielectric hydrodynamic system is considered. It is established that in a liquid, which is placed in a magnetic field, the temperature gradient can cause a convective mass flow, which leads to the appearance of an electric field in the surrounding space. The distribution of electric potential for various geometric implementations is calculated. A comparison of the obtained effect for normal and superfluid 4He is performed.

1.
V. D.
Natsik
and
A. S.
Rybalko
,
Fiz. Nizk. Temp.
46
,
33
(
2020
) [
Low Temp. Phys.
46, 28 (2020)].
2.
S. I.
Shevchenko
and
A. M.
Konstantinov
,
Fiz. Nizk. Temp.
46
,
57
(
2020
) [
Low Temp. Phys.
46, 48 (2020)].
3.
S. I.
Shevchenko
and
A. M.
Konstantinov
,
JETP Lett.
109
,
790
(
2019
).
4.
W. H.
Keesom
,
A. P.
Keesom
, and
B. F.
Saris
,
Physica
5
,
281
(
1938
).
5.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
London
,
1987
).
6.
G. Z.
Gershuni
and
E. M.
Zhukhovitskii
,
Convective Stability of Incompressible Fluids
(
Nauka
,
Moscow
,
1972
).
7.
M. R.
Ukhovskii
and
V. I.
Iudovich
,
J. Appl. Math. Mech.
27
,
432
(
1963
).
8.
L. D.
Landau
and
E. M.
Lifshitz
,
Electrodynamics of Continuous Media
(
Butterworth-Heinemann
,
London
,
1984
).
9.
I. E.
Tamm
,
Fundamentals of The Theory of Electricity
(
Mir, Mosсow
,
1979
).
10.
L.
Rayleigh
,
Phil. Mag.
32
,
529
(
1916
).
11.
G. A.
Ostroumov
,
Free Convection Under the Conditions of the Internal Problem
(
NACA
,
Washington
,
1958
).
12.
R. A.
Wooding
,
J. Fluid Mech.
7
,
501
(
1960
).
13.
A. A.
Pel’menev
,
A. A.
Levchenko
, and
L. P.
Mezhov-Deglin
,
JETP Lett.
110
,
551
(
2019
).
You do not currently have access to this content.