This paper reports the results of numerical modeling of wave reflection coefficient behavior of the metal-dielectric metasurface at microwaves that can be used for biomedical applications. The study includes optimization of the working parameters of the metasurface-based structure as a sensitive element of a microwave sensoring systems for determination of proteins concentration in different solutions. In the current research a unit with the geometry, which is similar to the geometry of one well of the standard 96-multiwell laboratory microplate, is used as a resonant metasurface unit cell and liquid-holding structure. Human serum albumin (HSA) is used as a protein specimen in our model study. The present numerical modeling is based on the results of our previous experimental measurements of complex permittivity values of HSA water solutions and its biochemical reaction mixtures using microwave dielectrometry method and the developed setup. The unit cell approach calculations are performed by COMSOL Multiphysics software. The optimization of working parameters of the metal-dielectric metasurface structure with tested solutions allow us to observe the resonance effects of the wave reflection coefficient in the microwave range. We can determine the HSA concentration changes in water solutions and enzymatic reaction mixtures by the resonance frequency shift of the wave reflection coefficient of the metal-dielectric metasurface. Developed metal-dielectric metasurface-based structure demonstrates prospects to be used as a sensitive element of microwave sensors for proteins concentration determination with biomedical purposes.

1.
B. T.
Doumas
and
T.
Peters
,
J. Clin. Chim. Acta
3
,
258
(
1997
).
2.
A.
Watanabe
,
S.
Matsuzaki
,
H.
Moriwaki
,
K.
Suzuki
, and
S.
Nishiguchi
,
Appl. Nutritional Investigation
20
,
351
(
2004
).
3.
L.
Labriola
and
P.
Wallemacq
,
B.
Gulbis
and
M.
Jadoul
,
Nephrol Dial Transplant
24
,
1834
(
2009
).
4.
Y.
Uchida
,
Y.
Okuzumi
,
M.
Fujishiro
,
K.
Kawamura
,
M.
Shibasaki
,
N.
Shimetani
, and
K.
Suzuki
, Rinsho Byori,
The Japanese Journal of Clinical Pathology
54
,
1008
(
2006
).
5.
T.
Ueno
,
S.
Hirayama
,
M.
Ito
,
E.
Nishioka
,
Y.
Fukushima
,
T.
Satoh
,
M.
Idei
,
Y.
Horiuchi
,
H.
Shoji
,
H.
Ohmura
,
T.
Shimizu
, and
T
.
Miida
,
Ann. Clinical Biochem.
50
,
576
(
2013
).
6.
B. T.
Doumas
and
T.
Peters
,
Clinical Chem.
55
,
583
(
2009
).
7.
A. I.
Gubin
,
A. A.
Barannik
,
N. T.
Cherpak
,
I. A.
Protsenko
,
S.
Pud
,
A.
Offenhäusser
, and
S. A.
Vitusevich
,
IEEE Trans. Microwave Theory and Tech.
63
,
2003
(
2015
).
8.
P.
Vélez
,
L.
Su
,
K.
Grenier
,
J.
Mata-Contreras
,
D.
Dubuc
, and
F.
Martín
,
IEEE Sensors J.
17
,
6589
(
2017
).
9.
K.
Grenier
,
D.
Dubuc
,
T.
Chen
,
F.
Artis
,
T.
Chretiennot
,
M.
Poupot
, and
J.
Fournié
,
IEEE Trans. Microwave Theory and Tech.
61
,
2003
(
2013
).
10.
W. J.
Ellison
,
J. Phys. Chem. Ref. Data
36
,
1
(
2007
).
11.
O. P.
Thakur
and
A. K.
Singh
,
Adv. Studies Theor. Phys.
2
,
637
(
2008
).
12.
I.
Bulu
,
H.
Caglayan
,
K.
Aydin
, and
E.
Ozbay
,
New J. Phys.
7
,
223
(
2005
).
13.
R.
Steigmann
,
A.
Savin
,
K.
Isteníková
,
D.
Faktorová
, and
P.
Fabo
,
IOP Conf. Series Materials Science and Engineering
(
2017
), p.
012123
.
14.
K.
Istenikova
and
D.
Faktorova
,
Przeglad Elektrotechniczny
88
,
223
(
2012
).
15.
D.
Rotshild
,
Y.
Azoulay
, and
A.
Abramovich
,
Sensors
22
,
1279
(
2022
).
16.
P.
Wuytens
,
H.
Demol
, and
N.
Turk
,
Faraday Discussions
205
,
345
(
2017
).
17.
K. S.
Kuznetsova
and
Z. E.
Eremenko
,
IEEE 38th Int. Conf. on Electronics and Nanotechnology
,
Kyiv, Ukraine
(
2018
).
18.
K. S.
Kuznetsova
,
V. A.
Pashynska
, and
Z. E.
Eremenko
,
IEEE 2nd Ukrainian Microwave Week
,
Kharkiv, Ukraine
(
2022
).
19.
Z. E.
Eremenko
,
V. A.
Pashynska
,
K. S.
Kuznetsova
,
A.
Shaposhnikova
, and
B.
Minofar
,
J. Molecular Liquids
364
,
119981
(
2022
).
20.
Life Science Catalog Products, user tips, and practical knowledge for life science applications, https://shop.brandtech.com/media/import/1/27/32406/42485/45431/53027/Life_Science_Katalog_EN.pdf
21.
N.
Pandit
and
R. K.
Jaiswal
,
IEEE Sensors J.
20
,
10582
(
2020
).
You do not currently have access to this content.