There exists a variety of theoretical proposals to transform states induced by magnetic nanoparticles inside a superconducting gap into Majorana fermion states. The main challenge in this route is a conclusive proof and undoubted distinguishing between topologically trivial subgap Andreev bound states and topologically nontrivial magnetically polarized Majorana bound states. This motivated us to investigate a nonequilibrium electrons tunneling through a ferromagnetic normal metal–magnetic quantum dot–s-wave superconductor (F-mQD-SC) nanostructure, where the mQD’s discrete levels are spin splitted. By using the Keldysh Green’s function method, the expressions for a tunnel current and probability of the Andreev reflection (AR) versus energy are derived and studied. We find that the system’s resonant ARs conductance exhibits different kinds of peaks depending on a spin splitting of the mQD levels, the spin polarization magnitude of the F-lead current, the gate voltage, and an external magnetic field magnitude. The nanostructure’s conductance versus a bias voltage exhibits extra peaks which at some combination of its parameters can mimic ones expected for Majorana modes in a topological superconducting state. The distinguishing transport characteristics of a F-mQD-SC nanoscale structure being in non-topological state are discussed. We suggest that the results obtained can provide helpful clarification for understanding recent experiments in superconductor–ferromagnet hybrid nanostructures with topologically protected excitations.

You do not currently have access to this content.