Second-generation high-temperature superconductor (2G HTS) tapes have demonstrated the ability to generate high magnetic fields and critical currents at a wide operating temperature range. In this paper, we study the mechanical properties of 2G HTS tape measured simultaneously with its critical current. The lattice deformations in the tape’s substrate caused by applied mechanical stress were measured by neutron diffraction. In our experiments, the 2G HTS tape was exposed to uniaxial tensile force ranging from 250 to 1100 N at temperature 77 K. The current through the tape was scanned in the range from 22 to 42 A. The experimental results have been obtained in a cryogenic testing chamber for neutron scattering measurements of internal stresses under load with the incorporated HTS current leads. Critical stress is a vital parameter required for the modeling and designing of advanced superconducting magnets and also a variety of different superconducting applications based on 2G HTS tapes.

1.
D. W.
Hazelton
,
V.
Selvamanickam
,
J. M.
Duval
,
D. C.
Larbalestier
,
W. D.
Markiewicz
,
H. W.
Weijers
, and
R. L.
Holtz
,
IEEE Trans. Appl. Supercond.
19
,
2218
(
2009
).
2.
M.
Noe
,
A.
Hobl
,
P.
Tixador
,
L.
Martini
, and
B.
Dutoit
,
IEEE Trans. Appl. Supercond.
22
,
5600304
(
2012
).
3.
M.
Yagi
,
S.
Mukoyama
,
N.
Amemiya
et al,
Physica C
471
,
1274
(
2011
).
4.
J.
Lu
,
D. V.
Abraimov
,
A. A.
Polyanskii
et al,
IEEE Trans. Appl. Supercond.
23
,
8200804
(
2013
).
5.
K.
Kasaba
,
K.
Katagiri
,
Y.
Shoji
,
T.
Takahashi
,
K.
Noto
,
K.
Goto
,
T.
Saito
, and
O.
Kono
,
Cryogenics
41
,
9
(
2001
).
6.
P.
Zhang
,
M.
Liang
,
X.
Tang
,
C.
Li
,
C.
Xiao
,
K.
Zhang
,
L.
Zhou
,
Y.
Wi
,
P.
Weng
, and
Y.
Lu
,
Physica C
468
,
1843
(
2008
).
7.
P.
Sunwong
,
J. S.
Higgins
, and
D. P.
Hampshire
,
Rev. Sci. Instrum.
85
,
065111
(
2014
).
8.
C.
Barth
,
G.
Mondonico
, and
C.
Senatore
,
Supercond. Sci. Technol.
28
,
045011
(
2015
).
9.
J. R.
Santisteban
,
M. R.
Daymond
,
J. A.
James
, and
L.
Edwards
, “
ENGIN-X: A third-generation neutron strain scanner
,”
J. Appl. Cryst.
39
,
812
(
2006
).
10.
E. C.
Oliver
,
B. E.
Evans
,
M. A. H.
Chowdhury
,
R. A.
Major
,
O.
Kirichek
, and
Z. A.
Bowden
,
Meas. Sci. Technol.
19
,
034019
(
2008
).
11.
O.
Kirichek
,
J. D.
Timms
,
J. F.
Kelleher
,
R. B. E.
Down
,
C. D.
Offer
,
S.
Kabra
, and
S. Y.
Zhang
,
Rev. Sci. Instrum.
88
,
025103
(
2017
).
12.
K.
Tao
,
J. J.
Wall
,
H.
Li
,
D. W.
Brown
,
S. C.
Vogel
, and
H. J.
Choo
,
Appl. Phys.
100
,
123515
(
2006
).
13.
Y.
Tsuchiya
,
H.
Suzuki
,
T.
Umeno
,
S.
Machiya
, and
K.
Osamura
,
Meas. Sci. Technol.
21
,
025904
(
2010
).
14.
S.
Lee
,
V.
Petrykin
,
A.
Molodyk
,
S.
Samoilenkov
,
A.
Kaul
,
A.
Vavilov
,
V.
Vysotsky
, and
S.
Fetisov
,
Supercond. Sci. Technol.
27
,
044022
(
2014
).
You do not currently have access to this content.