The Gentile statistics interpolates between the standard bosonic and fermionic statistics, allowing an intermediate maximum state occupation 1< M < ∞. A generalization of this statistics having the Gibbs factor e s / T phenomenologically substituted with the nonadditive Tsallis q-exponential is analyzed. Depending on the values of the statistics parameter q, peculiarities of the thermodynamic functions are observed: for q > 1, a finite (nonzero) minimum temperature arises in the model, while for q < 1, the specific heat does not tend to zero at T → 0. These results are consistent with previously reported for a similar generalization of the fermionic statistics [A. Rovenchak and B. Sobko, Physica A 534, 122098 (2019)]. Their relevance for modeling phenomena in real physical systems is briefly outlined.

1.
S.
Bose
, “
Plancks Gesetz und Lichtquantenhypothese
,”
Zs.Phys.
26
(
1
),
178
(
1924
).
2.
A.
Einstein
, “
Quantentheorie des einatomigen idealen Gases
,”
Sitzungsber Preuss. Konigl. Akad. Wiss.: Phys.-Math. Klasse
1924
,
261
.
3.
A.
Einstein
, “
Quantentheorie des einatomigen idealen Gases, zweite Abhandlung
,”
Sitzungsber. Preuss. Konigl. Akad. Wiss.: Phys.-Math. Klasse
1925, 3.
4.
E.
Fermi
, “
Zur Quantelung des idealen einatomigen Gases,
Zs. Phys.
36
, No.
11–12
,
902
(
1926
).
5.
P. A. M.
Dirac
, “
On the theory of quantum mechanics
,”
Proc. R. Soc. London Ser. A
112
,
661
(
1926
).
6.
G.
Gentile
, Jr
., “
Osservazioni sopra le statistiche intermedie
,”
Nuovo Cim.
17
,
493
(
1940
).
7.
G.
Gentile j
., “
Le statistiche intermedie e le proprietà dell’elio liquido
,”
Nuovo Cim. Nuova Ser.
19
, No.
4
,
109
(
1942
).
8.
A.
Isihara
,
Statistical Physics
, (
Academic Press
,
New York and London
,
1971
).
9.
R.
Ramanathan
, “
Further aspects of an interpolative quantum statistics,
Phys. Rev. E
48
, No.
2
,
843
(
1993
).
10.
O. W.
Greenberg
, “
Interactions of particles having small violations of statistics
,”
Physica A
180
,
419
(
1992
).
11.
O. W.
Greenberg
, “
Theories of violation of statistics
,”
AIP Conf. Proc.
545
,
113
(
2000
).
12.
S.
Selvi
and
H.
Uncu
, “
A new method for derivation of statistical weight of the gentile statistics
,”
Physica A
436
,
739
(
2015
).
13.
W
. S.
Chung
and
H.
Hassanabadi
, “
f-deformed boson algebra related to Gentile statistics
,”
Int. J. Theor. Phys.
56
,
1746
(
2017
).
14.
W. S.
Chung
and
H.
Hassanabadi
, “
On the p-deformed fermion algebra: Thermodynamics of p-fermion gas
,”
Ann. Phys.
386
,
242
(
2017
).
15.
Y.
Shen
and
F.-L.
Zhang
, “
Intermediate symmetric construction of transformation between anyon and Gentile statistics
,”
Commun. Theor. Phys.
73
,
065601
(
2021
).
16.
Y.
Shen
,
Ch.-Ch.
Zhou
, and
Y-Zh.
Chen
, “
The elementary excitation of spin lattice models The quasiparticles of Gentile statistics
,”
Physica A
596
,
127223
(
2022
).
17.
A.
Rovenchak
, “
Ideal Bose-gas in nonadditive statistics
,”
Fiz. Nizk. Temp.
44
,
1308
(
2018
) [
Low Temp. Phys.
44, 1025 (2018)].
18.
A.
Rovenchak
and
B.
Sobko
, “
Fugacity versus chemical potential in nonadditive generalizations of the ideal Fermi-gas
,”
Physica A
534
,
122098
(
2019
).
19.
B.
Sobko
and
A.
Rovenchak
, “
Superadditive model of the ideal Fermi-gas near absolute zero
,”
Visn. Lviv Univ. Ser. Phys.
56
,
65
(
2019
).
20.
E.
Lutz
and
F.
Renzoni
, “
Beyond Boltzmann-Gibbs statistical mechanics in optical lattices
,”
Nature Phys.
9
,
615
(
2013
).
21.
D.
Gribben
,
D. M.
Rouse
,
J.
Iles-Smith
,
A.
Strathearn
,
H.
Maguire
,
P.
Kirton
,
A.
Nazir
,
E. M.
Gauger
, and
B. W.
Lovett
, “
Exact dynamics of nonadditive environments in non-Markovian open quantum systems
,”
PRX Quantum
3
,
010321
(
2022
).
22.
M.
Irshad
,
M.
Khalid
, and
Ata-ur-
Rahman
, “
Modulational instability of ion acoustic excitations in a plasma with a κ-deformed Kaniadakis electron distribution
,”
Eur. Phys. J. Plus
137
, No.
8
,
1
(
2022
).
23.
R.
D’Agostino
, “
Holographic dark energy from nonadditive entropy: Cosmological perturbations and observational constraints
,”
Phys. Rev. D
99
,
103524
(
2019
).
24.
A.
Alonso-Serrano
,
M. P.
Dabrowski
, and
H.
Gohar
, “
Nonextensive black hole entropy and quantum gravity effects at the last stages of evaporation
,”
Phys. Rev. D
103
,
026021
(
2021
).
25.
P.
Jizba
and
G.
Lambiase
, “
Tsallis cosmology and its applications in dark matter physics with focus on IceCube high-energy neutrino data
,”
Eur. Phys. J. C
82
,
1123
(
2022
).
26.
A.
Ramirez-Arellano
,
L.
Manuel Hernández-Simón
, and
J.
Bory-Reyes
, “
A box-covering tsallis information dimension and non-extensive property of complex networks, chaos
,”
Solitons & Fractals
132
,
109590
(
2020
).
27.
R. M.
de Oliveira
,
S.
Brito
,
L. R.
da Silva
, and
C.
Tsallis
, “
Connecting complex networks to nonadditive entropies
,”
Sci. Rep.
11
,
1130
(
2021
).
28.
M. A.
Montemurro
,
A Generalization of the Zipf-Mandelbrot Law in Linguistics, in Nonextensive Entropy Interdisciplinary Applications
, edited by Murray Gell-Mann and Constantino Tsallis (
Oxford University Press
,
2004
), p.
347
.
29.
Y.
Liu
,
Ch.-Y.
Yu
, and
K.-M.
Shen
, “
Researches on the COVID-19 epidemic in the world within a nonextensive SIR model
,”
Med. Res. Arch.
(published online 2022).
30.
C.
Tsallis
, “
What are the numbers that experiments provide?
Qu쬩ca Nova
17
,
468
(
1994
).
31.
C.
Ou
and
J.
Chen
, “
Thermostatistic properties of a q-generalized Bose system trapped in an n-dimensional harmonic oscillator potential
,”
Phys. Rev. E
68
,
026123
(
2003
).
32.
T.
Yamano
, “
Some properties of q-logarithm and q-exponential functions in tsallis statistics
,”
Physica A
305
,
486
(
2002
).
33.
L.
Salasnich
, “
BEC in nonextensive statistical mechanics
,”
Int. J. Mod. Phys. B
14
,
405
(
2000
).
34.
W.-S.
Dai
and
M.
Xie
, “
Gentile statistics with a large maximum occupation number
,”
Ann. Phys. (N. Y.
)
309
,
295
(
2004
).
35.
W.-S.
Dai
and
M.
Xie
, “
Do bosons obey Bose-Einstein distribution: Two iterated limits of Gentile distribution
,”
Phys. Lett. A
373
,
1524
(
2009
).
36.
A. I.
Bugrij
and
V. M.
Loktev
, “
On the theory of ideal Bose-gas
,”
Fiz. Nizk. Temp.
47
,
132
(
2021
) [
Low Temp. Phys.
47, 116 (2021)].
37.
A. I.
Bugrij
and
V. M.
Loktev
, “
On the features of ideal Bose-gas thermodynamic properties at a finite particle number
,”
Ukr. J. Phys.
67
,
235
(
2022
).
38.
Hypergeometric2F1
. URL https://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1/, cited on 16 January
2023
.
39.
A. A.
Rovenchak
,
Exotic Statistics
, (
Lviv University Press
,
Lviv
,
2018
) ISBN 978-617-10-0461-0.
40.
M. H.
Anderson
,
J. N.
Ensher
,
M. R.
Matthews
,
C. E.
Wieman
, and
E. A.
Cornell
, “
Observation of Bose-Einstein condensation in a dilute atomic vapor
,”
Science
269
,
198
(
1995
).
41.
V. E.
Syvokon
and
S. S.
Sokolov
, “
Melting of twodimensional electron clusters in a magnetic field
,”
Fiz. Nizk. Temp.
49
,
50
(
2023
) [
Low Temp. Phys.
49, 46 (2023)].
42.
J. C.
Mauro
,
R. J.
Loucks
, and
S.
Sen
, “
Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems
,”
J. Chem. Phys.
133
,
164503
(
2010
).
43.
L.
Bovo
,
X.
Moya
,
D.
Prabhakaran
,
Y.-A.
Soh
,
A.T.
Boothroyd
,
N.D.
Mathur
,
G.
Aeppli
, and
S.T.
Bramwell
, “
Restoration of the third law in spin ice thin films
,”
Nature Commun.
5
,
3439
(
2014
).
44.
M. H.
Mohammady
and
T.
Miyadera
, “
Quantum measurements constrained by the third law of thermodynamics
,”
Phys. Rev. A
107
,
022406
(
2023
).
45.
F.
Capela
and
P. G.
Tinyakov
, “
Black hole thermodynamics and massive gravity
,”
J. High En. Phys.
2011
, 42.
46.
H.
Moradpour
,
A. H.
Ziaie
,
I. P.
Lobo
,
J. P.
Morais Graça
,
U. K.
Sharma
, and
A.
Sayahian Jahromi
, “
The third law of thermodynamics, non-extensivity and energy definition in black hole physics
,”
Mod. Phys. Lett. A
37
,
2250076
(
2022
).
47.
E. P.
Bento
,
G. M.
Viswanathan
,
M. G. E.
da Luz
, and
R.
Silva
, “
Third law of thermodynamics as a key test of generalized entropies
,”
Phys. Rev. E
91
,
022105
(
2015
).
48.
R.
De Pietri
,
A.
Feo
,
E.
Seiler
, and
I.-O.
Stamatescu
, “
A model for QCD at high density and large quark mass
,”
Phys. Rev. D
76
,
114501
(
2007
).
49.
M. M.
Stetsko
, “
Microscopic black hole and uncertainty principle with minimal length and momentum
,”
Int. J. Mod. Phys. A
28
, 1350029 (
2013
).
50.
B.
Hamil
and
B. C.
Lutfuoglu
, “
Effect of Snyder-de Sitter model on the black hole thermodynamics in the context of rainbow gravity
,”
Int. J. Geom. Meth. Mod. Phys.
19
,
2250047
(
2022
).
51.
C.
Quesne
and
V. M.
Tkachuk
, “
Harmonic oscillator with nonzero minimal uncertainties in both position and momentum in a SUSYQM framework
,”
J. Phys. A
36
,
10373
(
2003
).
52.
T. V.
Fityo
,
I. O.
Vakarchuk
, and
V. M.
Tkachuk
, “
The WKB approximation in the deformed space with the minimal length and minimal momentum
,”
J. Phys. A
41
,
045305
(
2008
).
53.
W. S.
Chung
and
H.
Hassanabadi
, “
Statistical physics when the minimum temperature is not absolute zero
,”
Mod. Phys. Lett. B
32
,
1850123
(
2018
).
54.
B.
Sobko
and
A.
Rovenchak
, “
Effective modeling of physical systems with fractional statistics
,”
Fiz. Nizk. Temp.
48
,
702
(
2022
) [
Low Temp. Phys.
48, 621 (2022)].
55.
A. M.
Gavrilik
and
Yu. A.
Mishchenko
, “
Composite fermions as deformed oscillators: Wavefunctions and entanglement
,”
Ukr. J. Phys.
64
,
1134
(
2019
).
56.
B.
Vitoriano
,
R. R.
Montenegro-Filho
, and
M. D.
Coutinho-Filho
, “
Fractional exclusion statistics and thermodynamics of the hubbard chain in the spin-incoherent Luttinger liquid regime
,”
Phys. Rev. B
98
,
085130
(
2018
).
You do not currently have access to this content.