At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample-to-sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductor and correlated insulator phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr-hBN ≈ 1.65°) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν = ±1/3 and ν = ±1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moiré superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements, and demonstrate the use of substrate engineering for modifying the electronic structure of a moiré flat-band material.

1.
Y.
Cao
,
V.
Fatemi
,
A.
Demir
,
S.
Fang
,
S. L.
Tomarken
,
J. Y.
Luo
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
,
R. C.
Ashoori
, and
P.
Jarillo-Herrero
, “
Correlated insulator behavior at half-filling in magic-angle graphene superlattices
,”
Nature
556
,
80
(
2018
).
2.
M.
Yankowitz
,
S.
Chen
,
H.
Polshyn
,
Y.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
,
D.
Graf
,
A. F.
Young
, and
C. R.
Dean
, “
Tuning superconductivity in twisted bilayer graphene
,”
Science
363
,
1059
(
2019
).
3.
X.
Liu
,
Z.
Hao
,
E.
Khalaf
,
J. Y.
Lee
,
Y.
Ronen
,
H.
Yoo
,
D. H.
Najafabadi
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Vishwanath
, and
P.
Kim
, “
Tunable spin-polarized correlated states in twisted double bilayer graphene
,”
Nature
583
,
221
(
2020
).
4.
G.
Chen
,
L.
Jiang
,
S.
Wu
,
B.
Lyu
,
H.
Li
,
B. L.
Chittari
,
K.
Watanabe
,
T.
Taniguchi
,
Z.
Shi
,
J.
Jung
,
Y.
Zhang
, and
F.
Wang
, “
Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
,”
Nat. Phys.
15
,
237
(
2019
).
5.
H.
Polshyn
, “
Electrical switching of magnetic order in an orbital Chern insulator
,”
Nature
588
,
66
(
2020
).
6.
L.
Wang
,
E.-M.
Shih
,
A.
Ghiotto
,
L.
Xian
,
D. A.
Rhodes
,
C.
Tan
,
M.
Claassen
,
D. M.
Kennes
,
Y.
Bai
,
B.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
X.
Zhu
,
J.
Hone
,
A.
Rubio
,
A. N.
Pasupathy
, and
C. R.
Dean
, “
Correlated electronic phases in twisted bilayer transition metal dichalcogenides
,”
Nat. Mater.
19
,
861
(
2020
).
7.
Y.
Tang
,
L.
Li
,
T.
Li
,
Y.
Xu
,
S.
Liu
,
K.
Barmak
,
K.
Watanabe
,
T.
Taniguchi
,
A. H.
MacDonald
,
J.
Shan
, and
K.
F. Mak
, “
Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices
,”
Nature
579
,
353
(
2020
).
8.
T.
Li
,
S.
Jiang
,
L.
Li
,
Y.
Zhang
,
K.
Kang
,
J.
Zhu
,
K.
Watanabe
,
T.
Taniguchi
,
D.
Chowdhury
,
L.
Fu
,
J.
Shan
, and
K. F.
Mak
, “
Continuous Mott transition in semiconductor moiré superlattices
,”
Nature
597
,
350
(
2021
).
9.
R.
Bistritzer
, and
A. H.
MacDonald
, “
Moiré bands in twisted double-layer graphene
,”
Proc. Natl. Acad. Sci. USA
108
,
12233
(
2011
).
10.
E.
Suárez Morell
,
J. D.
Correa
,
P.
Vargas
,
M.
Pacheco
, and
Z.
Barticevic
, “
Flat bands in slightly twisted bilayer graphene: Tight-binding calculations
,”
Phys. Rev. B
82
,
121407
(
2010
).
11.
H.
Polshyn
,
Y.
Zhang
,
M. A.
Kumar
,
T.
Soejima
,
P.
Ledwith
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Vishwanath
,
M. P.
Zaletel
, and
A. F.
Young
, “
Topological charge density waves at half-integer filling of a moiré superlattice
,”
Nat. Phys.
18
,
42
(
2021
).
12.
S.
Wu
,
Z.
Zhang
,
K.
Watanabe
,
T.
Taniguchi
, and
E. Y.
Andrei
, “
Chern insulators, van Hove singularities and topological flat bands in magic-angle twisted bilayer graphene
,”
Nat. Mater.
20
,
488
(
2021
).
13.
H.
Zhou
,
T.
Xie
,
A.
Ghazaryan
,
T.
Holder
,
J. R.
Ehrets
,
E. M.
Spanton
,
T.
Taniguchi
,
K.
Watanabe
,
E.
Berg
,
M.
Serbyn
, and
A. F.
Young
, “
Half- and quarter-metals in rhombohedral trilayer graphene
,”
Nature
598
,
429
(
2021
).
14.
P.
Siriviboon
,
J.-X.
Lin
,
X.
Liu
,
H. D.
Scammell
,
S.
Liu
,
D.
Rhodes
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
M. S.
Scheurer
, and
J. I. A.
Li
, “
A new flavor of correlation and superconductivity in small twist-angle trilayer graphene
,” arXiv:2112.07127 (
2021
).
15.
G.
Chen
,
A. L.
Sharpe
,
E. J.
Fox
,
S.
Wang
,
B.
Lyu
,
L.
Jiang
,
H.
Li
,
K.
Watanabe
,
T.
Taniguchi
,
M. F.
Crommie
,
M. A.
Kastner
,
Z.
Shi
,
D.
Goldhaber-Gordon
,
Y.
Zhang
, and
F.
Wang
, “
Tunable orbital ferromagnetism at noninteger filling of a moiré superlattice
,”
Nano Lett.
22
,
238
(
2022
).
16.
E. C.
Regan
,
D.
Wang
,
C.
Jin
,
M. I. B.
Utama
,
B.
Gao
,
X.
Wei
,
S.
Zhao
,
W.
Zhao
,
Z.
Zhang
,
K.
Yumigeta
,
M.
Blei
,
J. D.
Carlström
,
K.
Watanabe
,
T.
Taniguchi
,
S.
Tongay
,
M.
Crommie
,
A.
Zettl
, and
F.
Wang
, “
Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices
,”
Nature
579
,
359
(
2020
).
17.
Y.
Xu
,
S.
Liu
,
D. A.
Rhodes
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Hone
,
V.
Elser
,
K. F.
Mak
, and
J.
Shan
, “
Correlated insulating states at fractional fillings of moiré superlattices
,”
Nature
587
,
214
(
2020
).
18.
X.
Huang
,
T.
Wang
,
S.
Miao
,
C.
Wang
,
Z.
Li
,
Z.
Lian
,
T.
Taniguchi
,
K.
Watanabe
,
S.
Okamoto
,
D.
Xiao
,
S.-F.
Shi
, and
Y.-T.
Cui
, “
Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice
,”
Nat. Phys.
17
,
715
(
2021
).
19.
Y.
Xu
,
K.
Kang
,
K.
Watanabe
,
T.
Taniguchi
,
K. F.
Mak
, and
J.
Shan
, “
A tunable bilayer Hubbard model in twisted WSe2
,”
Nat. Nanotechnol.
17
,
934
(
2022
).
20.
E.
Wigner
, “
On the interaction of electrons in metals
,”
Phys. Rev.
46
,
1002
(
1934
).
21.
C. C.
Grimes
, and
G.
Adams
, “
Evidence for a liquid-to-crystal phase transition in a classical, two-dimensional sheet of electrons
,”
Phys. Rev. Lett.
42
,
795
(
1979
).
22.
E. Y.
Andrei
,
G.
Deville
,
D. C.
Glattli
,
F. I. B.
Williams
, and
E.
Paris
, and
B.
Etienne
Observation of a magnetically induced Wigner solid
,”
Phys. Rev. Lett.
60
,
2765
(
1988
).
23.
H.
Li
,
S.
Li
,
E. C.
Regan
,
D.
Wang
,
W.
Zhao
,
S.
Kahn
,
K.
Yumigeta
,
M.
Blei
,
T.
Taniguchi
,
K.
Watanabe
,
S.
Tongay
,
A.
Zettl
,
M. F.
Crommie
, and
F.
Wang
, “
Imaging two-dimensional generalized Wigner crystals
,”
Nature
597
,
650
(
2021
).
24.
H.
Li
,
Z.
Xiang
,
E.
Regan
,
W.
Zhao
,
R.
Sailus
,
R.
Banerjee
,
T.
Taniguchi
,
K.
Watanabe
,
S.
Tongay
,
A.
Zettl
,
M. F.
Crommie
, and
F.
Wang
, “
Mapping charge excitations in generalized Wigner crystals
,” arXiv:2209.12830 (
2022
).
25.
D.
Wong
,
Y.
Wang
,
J.
Jung
,
S.
Pezzini
,
A. M.
DaSilva
,
H.-Z.
Tsai
,
H. S.
Jung
,
R.
Khajeh
,
Y.
Kim
,
J.
Lee
,
S.
Kahn
,
S.
Tollabimazraehno
,
H.
Rasool
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Zettl
,
S.
Adam
,
A. H.
MacDonald
, and
M. F.
Crommie
, “
Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene
,”
Phys. Rev. B
92
,
155409
(
2015
).
26.
M.
Yankowitz
,
J.
Xue
,
D.
Cormode
,
J. D.
Sanchez-Yamagishi
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Jarillo-Herrero
,
P.
Jacquod
, and
B. J.
LeRoy
, “
Emergence of superlattice Dirac points in graphene on hexagonal boron nitride
,”
Nat. Phys.
8
,
382
(
2012
).
27.
B.
Hunt
,
J. D.
Sanchez-Yamagishi
,
A. F.
Young
,
M.
Yankowitz
,
B. J.
Leroy
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Moon
,
M.
Koshino
,
P.
Jarillo-Herrero
, and
R. C.
Ashoori
, “
Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure
,”
Science
340
,
1427
(
2013
).
28.
X.
Zhang
,
K.-T.
Tsai
,
Z.
Zhu
,
W.
Ren
,
Y.
Luo
,
S.
Carr
,
M.
Luskin
,
E.
Kaxiras
, and
K.
Wang
, “
Correlated insulating states and transport signature of superconductivity in twisted trilayer graphene superlattices
,”
Phys. Rev. Lett.
127
,
166802
(
2021
).
29.
D.
Wong
,
S.
Jeon
,
K. P.
Nuckolls
,
M.
Oh
,
S. C. J.
Kingsley
, and
A.
Yazdani
, “
A modular ultra-high vacuum millikelvin scanning tunneling microscope
,”
Rev. Sci. Instrum.
91
,
023703
(
2020
).
30.
D.
Wong
,
K. P.
Nuckolls
,
M.
Oh
,
B.
Lian
,
Y.
Xie
,
S.
Jeon
,
K.
Watanabe
,
T.
Taniguchi
,
B. A.
Bernevig
, and
A.
Yazdani
, “
Cascade of electronic transitions in magic-angle twisted bilayer graphene
,”
Nature
582
,
198
(
2020
).
31.
S. J.
Ahn
,
P.
Moon
,
T.-H.
Kim
,
H.-W.
Kim
,
H.-C.
Shin
,
E. H.
Kim
,
H. W.
Cha
,
S.-J.
Kahng
,
P.
Kim
,
M.
Koshino
,
Y.-W.
Son
,
C.-W.
Yang
, and
J. R.
Ahn
, “
Dirac electrons in a dodecagonal graphene quasicrystal
,”
Science
361
,
782
(
2018
).
32.
T.
Yu
and
L.
Liao
, “
Comment on “Dirac electrons in a dodecagonal graphene quasicrystal”
,” arXiv:1808.08730 (
2018
).
33.
M.
Oh
,
K. P.
Nuckolls
,
D.
Wong
,
R. L.
Lee
,
X.
Liu
,
K.
Watanabe
,
T.
Taniguchi
, and
A.
Yazdani
, “
Evidence for unconventional superconductivity in twisted bilayer graphene
,”
Nature
600
,
240
(
2021
).
34.
H.
Kim
,
Y.
Choi
,
C.
Lewandowski
,
A.
Thomson
,
Y.
Zhang
,
R.
Polski
,
K.
Watanabe
,
T.
Taniguchi
,
J.
Alicea
, and
S.
Nadj-Perge
, “
Evidence for unconventional superconductivity in twisted trilayer graphene
,”
Nature
606
,
494
(
2022
).
35.
A. L.
Sharpe
,
E. J.
Fox
,
A. W.
Barnard
,
J.
Finney
,
K.
Watanabe
,
T.
Taniguchi
, and
M. A.
Kastner
, and
D.
Goldhaber-Gordon
, “
Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene
,”
Science
365
,
605
(
2019
).
36.
M.
Serlin
,
C. L.
Tschirhart
,
H.
Polshyn
,
Y.
Zhang
,
J.
Zhu
,
K.
Watanabe
,
T.
Taniguchi
,
L.
Balents
, and
A. F.
Young
, “
Intrinsic quantized anomalous Hall effect in a moiré heterostructure
,”
Science
367
,
900
(
2020
).
37.
A. A.
Zibrov
,
E. M.
Spanton
,
H.
Zhou
,
C.
Kometter
,
T.
Taniguchi
,
K.
Watanabe
, and
A. F.
Young
, “
Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene
,”
Nat. Phys.
14
,
930
(
2018
).
38.
T.
Han
,
J.
Yang
,
Q.
Zhang
,
L.
Wang
,
K.
Watanabe
,
T.
Taniguchi
,
P. L.
McEuen
, and
L.
Ju
, “
Accurate measurement of the gap of graphene/h-BN moiré superlattice through photocurrent spectroscopy
,”
Phys. Rev. Lett.
126
,
146402
(
2021
).
39.
U.
Zondiner
,
A.
Rozen
,
D.
Rodan-Legrain
,
Y.
Cao
,
R.
Queiroz
,
T.
Taniguchi
,
K.
Watanabe
,
Y.
Oreg
,
F.
von Oppen
,
A.
Stern
,
E.
Berg
,
P.
Jarillo-Herrero
, and
S.
Ilani
, “
Cascade of phase transitions and Dirac revivals in magic-angle graphene
,”
Nature
582
,
203
(
2020
).
40.
G. L.
Yu
,
R. V.
Gorbachev
,
J. S.
Tu
,
A. V.
Kretinin
,
Y.
Cao
,
R.
Jalil
,
F.
Withers
,
L. A.
Ponomarenko
,
B. A.
Piot
,
M.
Potemski
,
D. C.
Elias
,
X.
Chen
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
K. S.
Novoselov
,
V. I.
Fal’ko
,
A. K.
Geim
, and
A.
Mishchenko
, “
Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices
,”
Nat. Phys.
10
,
525
(
2014
).
41.
A.
Uri
,
S.
Grover
,
Y.
Cao
,
J. A.
Crosse
,
K.
Bagani
,
D.
Rodan-Legrain
,
Y.
Myasoedov
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Moon
,
M.
Koshino
,
P.
Jarillo-Herrero
, and
E.
Zeldov
, “
Mapping the twist-angle disorder and Landau levels in magic-angle graphene
,”
Nature
581
,
47
(
2020
).
42.
J.
Jung
,
A. M.
Dasilva
,
A. H.
Macdonald
, and
S.
Adam
, “
Origin of band gaps in graphene on hexagonal boron nitride
,”
Nat. Commun.
6
,
1
(
2015
).
43.
J. C. W.
Song
,
P.
Samutpraphoot
, and
L. S.
Levitov
, “
Topological Bloch bands in graphene superlattices
,”
Proc. Natl. Acad. Sci. USA
112
,
10879
(
2015
).
44.
B.
Uchoa
,
V. N.
Kotov
, and
M.
Kindermann
, “
Valley order and loop currents in graphene on hexagonal boron nitride
,”
Phys. Rev. B
91
,
121412
(
2015
).
45.
Y.
Cao
,
V.
Fatemi
,
S.
Fang
,
K.
Watanabe
,
T.
Taniguchi
,
E.
Kaxiras
, and
P.
Jarillo-Herrero
, “
Unconventional superconductivity in magic-angle graphene superlattices
,”
Nature
556
,
43
(
2018
).
46.
E.
Khalaf
,
S.
Chatterjee
,
N.
Bultinck
,
M. P.
Zaletel
, and
A.
Vishwanath
, “
Charged skyrmions and topological origin of superconductivity in magic-angle graphene
,”
Sci Adv.
7
, eabf5299 (
2021
).
47.
M.
Christos
,
S.
Sachdev
, and
M. S.
Scheurer
, “
Superconductivity, correlated insulators, and Wess-Zumino-Witten terms in twisted bilayer graphene
,”
Proc. Natl. Acad. Sci. USA
117
,
29543
(
2020
).
48.
E.
Lake
,
A. S.
Patri
, and
T.
Senthil
, “
Pairing symmetry of twisted bilayer graphene: A phenomenological synthesis
,”
Phys. Rev. B
106
,
104506
(
2022
).
You do not currently have access to this content.