An ultra-low-noise large-bandwidth transimpedance amplifier (TIA) for cryogenic scanning tunneling microscope (CryoSTM) is proposed. The TIA connected with the tip-sample component in CryoSTM is called as CryoSTM-TIA. Its transimpedance gain is as high as 1 GΩ, and its bandwidth is over 300 kHz, but its equivalent input noise current power spectral density is less than 4 (fA)2/Hz at 100 kHz. The low inherent noise for the CryoSTM-TIA is due to its special design: (1) its pre-amplifier is made of a pair of low-noise cryogenic high electron mobility transistors (HEMTs); (2) the noise generated by one HEMT is eliminated by a large capacitor; (3) the capacitance of the cable connected the gate of the other HEMT to the tip is minimized; (4) thermal noise sources, such as the feedback resistor, are placed in the cryogenic zone. The dc output voltage drift of the CryoSTM-TIA is very low, as 5 μV/°C. The apparatus can be used for measuring the scanning tunneling differential conductance spectra, especially the scanning tunneling shot noise spectra (STSNS) of quantum systems, even if the shot noise is very low. It provides a universal tool to study various novel quantum states by measuring STSNS, such as detecting the Majorana bound states.

1.
Y. M.
Blanter
, and
M.
Büttiker
,
Phys. Rep.
336
,
1
(
2000
).
2.
H.
Bartolomei
,
M.
Kumar
,
R.
Bisognin
,
A.
Marguerite
,
J. M.
Berroir
,
E.
Bocquillon
,
B.
Placais
,
A.
Cavanna
,
Q.
Dong
,
U.
Gennser
,
Y.
Jin
, and
G.
Fève
,
Science
368
,
173
(
2020
).
3.
K. M.
Bastiaans
,
D.
Cho
,
T.
Benschop
,
I.
Battisti
,
Y.
Huang
,
M. S.
Golden
,
Q.
Dong
,
Y.
Jin
,
J.
Zaanen
, and
M. P.
Allan
,
Nat. Phys.
14
,
1183
(
2018
).
4.
F.
Massee
,
Y. K.
Huang
,
M. S.
Golden
, and
M.
Aprili
,
Nat. Commun.
10
,
544
(
2019
).
5.
P. P.
Zhou
,
L. Y.
Chen
,
Y.
Liu
,
I.
Sochnikov
,
A. T.
Bollinger
,
M. G.
Han
,
Y. M.
Zhu
,
X.
He
,
I.
Božović
, and
D.
Natelson
,
Nature
572
,
493
(
2019
).
6.
K. M.
Bastiaans
,
D.
Chatzopoulos
,
J. F.
Ge
,
D.
Cho
,
W. O.
Tromp
,
J. M.
van Ruitenbeek
,
M. H.
Fischer
,
P. J.
De Visser
,
D. J.
Thoen
,
E. F. C.
Driessen
,
T. M.
Klapwijk
, and
M. P.
Allan
,
Science
374
,
608
(
2021
).
7.
F.
Lefloch
,
C.
Hoffmann
,
M.
Sanquer
, and
D.
Quirion
,
Phys. Rev. Lett.
90
,
067002
(
2003
).
8.
K. M.
Bastiaansa
,
D.
Cho
,
D.
Chatzopoulos
,
M.
Leeuwenhoek
,
C.
Koks
, and
M. P.
Allan
,
Phys. Rev. B
100
,
104506
(
2019
).
9.
T.
Delattre
,
C.
Feuillet-Palma
,
L. G.
Herrmann
,
P.
Morfin
,
J. M.
Berroir
,
G.
Fève
,
B.
Placais
,
D. C.
Glattli
,
M. S.
Choi
,
C.
Mora
, and
T.
Kontos
,
Nat. Phys.
5
,
208
(
2009
).
10.
F.
Massee
,
Q.
Dong
,
A.
Cavanna
,
Y.
Jin
, and
M.
Aprili
,
Rev. Sci. Instrum.
89
,
093708
(
2018
).
11.
K. M.
Bastiaans
,
T.
Benschop
,
D.
Chatzopoulos
,
D.
Cho
,
Q.
Dong
,
Y.
Jin
, and
M. P.
Allan
,
Rev. Sci. Instrum.
89
,
093709
(
2018
).
12.
S.
Das Sarma
,
M.
Freedman
, and
C.
Nayak
,
npj Quantum Inf.
1
,
15001
(
2015
).
13.
S.
Nadj-Perge
,
I. K.
Drozdov
,
J.
Li
,
H.
Chen
,
S. J.
Jeon
,
J. P.
Seo
,
A. H.
MacDonald
,
B. A.
Bernevig
, and
A.
Yazdani
,
Science
346
,
602
(
2014
).
14.
H. H.
Sun
,
K. W.
Zhang
,
L. H.
Hu
,
C.
Li
,
G. Y.
Wang
,
H. Y.
Ma
,
Z. A.
Xu
,
C. L.
Gao
,
D. D.
Guan
,
Y. Y.
Li
,
C. H.
Liu
,
D.
Qian
,
Y.
Zhou
,
L.
Fu
,
S. C.
Li
,
F. C.
Zhang
, and
J. F.
Jia
,
Phys. Rev. Lett.
116
,
257003
(
2016
).
15.
D. F.
Wang
,
L. Y.
Kong
,
P.
Fan
,
H.
Chen
,
S. Y.
Zhu
,
W. Y.
Liu
,
L.
Cao
,
Y. J.
Sun
,
S. X.
Du
,
J.
Schneeloch
,
R. D.
Zhong
,
G. D.
Gu
,
L.
Fu
,
H.
Ding
, and
H. J.
Gao
,
Science
362
,
333
(
2018
).
16.
B.
Jäck
,
Y. L.
Xie
, and
A.
Yazdani
,
Nat. Rev. Phys.
3
,
541
(
2021
).
18.
C. J.
Bolech
, and
E.
Demler
,
Phys. Rev. Lett.
98
,
237002
(
2007
).
19.
A.
Golub
, and
B.
Horovitz
,
Phys. Rev. Lett.
83
,
153415
(
2011
).
20.
H.
Soller
, and
A.
Komnik
,
Physica E
63
,
99
(
2014
).
21.
D. E.
Liu
,
M.
Cheng
, and
R. M.
Lutchyn
,
Phys. Rev. B
91
,
081405
(
2015
).
22.
C. W. J.
Beenakker
, and
D. O.
Oriekhov
,
SciPost Phys.
9
,
080
(
2020
).
23.
J.
Manousakis
,
C.
Wille
,
A.
Altland
,
R.
Egger
,
K.
Flensberg
, and
F.
Hassler
,
Phys. Rev. Lett.
124
,
096801
(
2020
).
24.
A. M.
Calle
,
P. A.
Orellana
, and
J. A.
Otalora
,
Annalen der Physik
533
,
2100040
(
2021
).
25.
C. J.
Chen
,
Introduction to Scanning Tunneling Microscopy
(
Oxford Univ. Press
,
1993
), Chapt. 11.
26.
Q. F.
Li
,
Q.
Wang
,
Y. B.
Hou
, and
Q. Y.
Lu
,
Rev. Sci. Instrum.
83
,
043706
(
2012
).
27.
J. F.
Ge
,
M.
Ovadia
, and
J. E.
Hoffman
,
Rev. Sci. Instrum.
90
,
101401
(
2019
).
28.
29.
30.
Y. X.
Liang
,
Q.
Dong
,
M. C.
Cheng
,
U.
Gennser
,
A.
Cavanna
, and
Y.
Jin
,
Appl. Phys. Lett.
99
,
113505
(
2011
).
31.
Y.
Jin
,
Q.
Dong
,
A.
Cavanna
,
U.
Gennser
,
L.
Couraud
, and
C.
Ulysse
, “
Specific HEMTs for deep cryogenic high-impedance ultra low low-frequency noise read-out electronics
,” in
12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
,
Grenoble, France
,
7–9 July 2014
.
32.
Data sheet of THS4021 OPA [Online], https://www.ti.com/lit/ds/symlink/ths4021.pdf.
34.
TINA-TI is SPICE-based analog simulation program produced by Texas Instruments Inc. [Online], https://www.ti.com/tool/TINA-TI.
35.
B.
Michel
,
L.
Novotny
, and
U.
Dürig
,
Ultramicroscopy
42-44
,
1647
(
1992
).
36.
S.
Franco
,
Design with Operational Amplifiers and Analog Integrated Circuit
(
McGraw-Hill Companies Inc.
,
2002
).
43.
Y.
Mu
,
T. L.
Hu
,
C.
Chen
,
H.
Gong
, and
S. J.
Li
,
Infrared and Laser Engineering
48
,
0405001
(
2019
).
44.
W.
Zhang
,
Z. L.
Li
,
P.
Guo
, and
J. Y.
Zhao
,
Semicond. Optoelectron.
41
,
560
(
2020
).
46.
L. Y.
Kong
, and
H.
Ding
,
Acta. Phys. Sin.
69
,
110301
(
2020
).

Supplementary Material

You do not currently have access to this content.