The low-temperature dependence of the heat capacity of acrylonitrile-butadiene-styrene (ABS) polymer and its composite with thermally reduced graphene oxide was studied. The existence of a so-called “boson peak” characteristic of orientational and structural glasses was demonstrated. The boson peak appears in the form of a local maximum in the heat capacity curve displayed as C/T3 vs T at Tmax = 3.52 K. It was found that for both ABS polymer and its composite, as well as for a number of other substances of a crystalline and amorphous nature, the manifestation of the anomaly of the boson peak in the heat capacity has a universal character that is described by an empirical function Δ*. The value of Δ* depends on the magnitude of the anomaly in the heat capacity and the temperature of the boson peak manifestation. Thus, this study provides new physical information about the possible causes of the boson peak appearance in disordered materials and indicates the universality of boson peak anomaly for substances with short- and long-range order.

1.
M. C.
Wingert
,
J.
Zheng
,
S.
Kwon
, and
R.
Chen
, “
Thermal transport in amorphous materials: A review
,”
Semicond. Sci. Technol.
31
,
113003
(
2016
).
2.
A.
Giri
,
J. L.
Braun
,
J. A.
Tomko
, and
P. E.
Hopkins
, “
Reducing the thermal conductivity of chemically ordered binary alloys below the alloy limit via the alteration of phonon dispersion relations
,”
Appl. Phys. Lett.
110
,
233112
(
2017
).
3.
G. C.
Sosso
,
V. L.
Deringer
,
S. R.
Elliott
, and
G.
Cśanyi
, “
Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials
,”
Molecular Simulation
44
,
866
(
2018
).
4.
M. T.
Agne
,
R.
Hanus
, and
G. J.
Snyder
, “
Minimum thermal conductivity in the context of diffuson-mediated thermal transport
,”
Energy & Environmental Science
11
,
609
(
2018
).
5.
L.
Isaeva
,
G.
Barbalinardo
,
D.
Donadio
, and
S.
Baroni
, “
Modeling heat transport in crystals and glasses from a unified lattice-dynamical approach
,”
Nature Commun.
10
,
1
(
2019
).
6.
M.
Simoncelli
,
N.
Marzari
, and
F.
Mauri
, “
Unified theory of thermal transport in crystals and glasses
,”
Nature Phys.
15
,
809
(
2019
).
7.
T.
Zhou
,
Z.
Li
,
Y.
Cheng
,
Y.
Ni
,
S.
Volz
,
D.
Donadio
,
S.
Xiong
,
W.
Zhang
, and
X.
Zhang
, “
Thermal transport in amorphous small organic materials: A mechanistic study
,”
Phys. Chem. Chem. Phys.
22
,
3058
(
2020
).
8.
R. C.
Zeller
, and
R. O.
Pohl
, “
Thermal conductivity and specific heat of noncrystalline solids
,”
Phys. Rev. B
4
,
2029
(
1971
).
9.
W. A.
Phillips
, “
Two-level states in glasses
,”
Rep. Prog. Phys.
50
,
1657
(
1987
).
10.
R. O.
Pohl
,
X.
Liu
, and
E.
Thompson
, “
Low-temperature thermal conductivity and acoustic attenuation in amorphous solids,
Rev. Mod. Phys.
74
,
991
(
2002
).
11.
P. W.
Anderson
,
B. I.
Halperin
, and
C. M.
Varma
, “
Anomalous low-temperature thermal properties of glasses and spin glasses
,”
Philos. Mag.
25
,
1
(
1972
).
12.
U.
Buchenau
,
Y. M.
Galperin
,
V. L.
Gurevich
, and
H. R.
Schober
, “
Anharmonic potentials and vibrational localization in glasses
,”
Phys. Rev. B
43
,
5039
(
1991
).
13.
W.
Schirmacher
, “
Thermal conductivity of glassy materials and the “boson peak”
,”
Europhys. Lett.
73
,
892
(
2006
).
14.
B.
Cui
,
R.
Milkus
, and
A.
Zaccone
, “
The relation between stretched-exponential relaxation and the vibrational density of states in glassy disordered systems
,”
Phys. Lett. A
381
,
446
(
2017
).
15.
A. I.
Chumakov
,
G.
Monaco
,
A.
Monaco
,
W. A.
Crichton
,
A.
Bosak
,
R.
Rüffer
,
A.
Meyer
,
F.
Kargl
,
L.
Comez
,
D.
Fioretto
, ., “
Equivalence of the boson peak in glasses to the transverse acoustic van hove singularity in crystals
,”
Phys. Rev. Lett.
106
,
225501
(
2011
).
16.
T.
Grigera
,
V.
Martín-Mayor
,
G.
Parisi
, and
P.
Verrocchio
, “
Phonon interpretation of the “boson peak” in supercooled liquids
,”
Nature
422
,
289
(
2003
).
17.
H.
Shintani
, and
H.
Tanaka
, “
Universal link between the boson peak and transverse phonons in glass
,”
Nature Mater.
7
,
870
(
2008
).
18.
A. I.
Krivchikov
,
A.
Jeźowski
,
D.
Szewczyk
,
O. A.
Korolyuk
,
O. O.
Romantsova
,
L. M.
Buravtseva
,
C.
Cazorla
, and
J.-L.
Tamarit
, “
Role of optical phonons and anharmonicity in the appearance of the heat capacity boson peak-like anomaly in fully ordered molecular crystals
,”
J. Phys. Chem. Lett.
13
,
5061
(
2022
).
19.
D.
Szewczyk
,
J. F.
Gebbia
,
A.
Jeźowski
,
A. I.
Krivchikov
,
T.
Guidi
,
C.
Cazorla
, and
J.-L.
Tamarit
, “
Heat capacity anomalies of the molecular crystal 1-fluoro-adamantane at low temperatures
,”
Sci. Rep.
11
,
1
(
2021
).
20.
S.
Olivera
,
H. B.
Muralidhara
,
K.
Venkatesh
,
K.
Gopalakrishna
, and
C. S.
Vivek
, “
Plating on acrylonitrile–butadiene–styrene (ABS) plastic: A review
,”
J. Mater. Sci.
51
,
3657
(
2016
).
21.
J. E.
McCaskie
, “
Plating on plastics: A survey of mechanisms for adhering metal films to plastic surfaces
,”
Metal Finishing
104
,
31
(
2006
).
22.
G. O.
Mallory
and
J. B.
Hajdu
,
Electroless Plating: Fundamentals and Applications
, (
William Andrew
,
1990
).
23.
J. R.
Arnold
, “
High quality copper-nickel-chromium plating on plastics: A continuous process and its challenges
,”
Plating and Surface Finishing
91
,
38
(
2004
).
24.
M. V.
Kulkarni
,
K.
Elangovan
, and
K.
Hemachandra Reddy
, “
Improvements in impact resistance property of metal plated ABS and nylon6 thermoplastics
,”
FS J. Engg Res.
1
,
31
(
2012
).
25.
A.
Equbal
, and
A. K.
Sood
, “
Metallization on FDM parts using the chemical deposition technique
,”
Coatings
4
,
574
(
2014
).
26.
R.
Tsukuda
,
S.
Sumimoto
, and
T.
Ozawa
, “
Thermal conductivity and heat capacity of ABS resin composites
,”
J. Appl. Polymer Sci.
63
,
1279
(
1997
).
27.
U.
Gaur
,
S.-F.
Lau
,
B. B.
Wunderlich
, and
B.
Wunderlich
, “
Heat capacity and other thermodynamic properties of linear macromolecules. VI. acrylic polymers
,”
J. Phys. Chem. Refer. Data
11
,
1065
(
1982
).
28.
A.
Bhattacharyya
,
T. L.
Smith
, and
A. C.
Anderson
, “
Low-temperature thermal conductivity and specific heat of elastomers
,”
J. Non-Crystalline Solids
31
,
395
(
1979
).
29.
A.
Nittke
,
M.
Scherl
,
P.
Esquinazi
,
W.
Lorenz
,
J.
Li
, and
F.
Pobell
, “
Low-temperature heat release, sound velocity and attenuation, specific heat and thermal conductivity in polymers
,”
J. Low Temp. Phys.
98
,
517
(
1995
).
30.
E.
Bartolomé
,
B.
Bozzo
,
P.
Sevilla
,
O.
Martźnez-Pasarell
,
T.
Puig
, and
X.
Granados
, “
ABS 3d printed solutions for cryogenic applications
,”
Cryogenics
82
,
30
(
2017
).
31.
W. S.
Hummers
, Jr and
R. E.
Offeman
, “
Preparation of graphitic oxide
,”
J. Am. Chem. Soc.
80
,
1339
(
1958
).
32.
A. V.
Dolbin
,
M. V.
Khlistyuck
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
N. A.
Vinnikov
,
R. M.
Basnukaeva
,
I.
Maluenda
,
W. K.
Maser
, and
A. M.
Benito
, “
The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials
,”
Appl. Surf. Sci.
361
,
213
(
2016
).
33.
P.
Sun
,
Y.
Wang
,
H.
Liu
,
K.
Wang
,
D.
Wu
,
Z.
Xu
, and
H.
Zhu
, “
Structure evolution of graphene oxide during thermally driven phase transformation: Is the oxygen content really preserved?
,”
PloS. One
9
,
e111908
(
2014
).
34.
A. V.
Dolbin
,
N. A.
Vinnikov
,
V. B.
Esel’son
,
V. G.
Gavrilko
,
R. M.
Basnukaeva
,
M. V.
Khlistyuck
,
A. I.
Prokhvatilov
,
V. V.
Meleshko
,
O. L.
Rezinkin
,
M. M.
Rezinkina
, ., “
The impact of treating graphene oxide with a pulsed high-frequency discharge on the low-temperature sorption of hydrogen
,”
Fiz. Nizk. Temp.
46
,
355
(
2020
) [
Low Temp. Phys.
46, 293 (2020)].
35.
J. S.
Hwang
,
K. J.
Lin
, and
C.
Tien
, “
Measurement of heat capacity by fitting the whole temperature response of a heat-pulse calorimeter
,”
Rev. Sci. Instrum.
68
,
94
(
1997
).
36.
V. G.
Karpov
,
I.
Klinger
, and
F. N.
Ignat’ev
, “
Theory of the low-temperature anomalies in the thermal properties of amorphous structures
,”
Zh. Eksp. Teor. Fiz.
84
,
760
(
1983
).
37.
D. A.
Parshin
, “
Soft potential model and universal properties of glasses
,”
Phys. Scripta
1993
,
180
(
1993
).
38.
M. A.
Strzhemechny
,
A. I.
Krivchikov
, and
A.
Jeźowski
, “
Heat capacity of molecular solids: The special case of cryocrystals
,”
Fiz. Nizk. Temp.
45
,
1524
(
2019
) [
Low Temp. Phys.
45, 1290 (2019)].
39.
M. A.
Ramos
,
Low-temperature Thermal and Vibrational Properties of Disordered Solids: a Half-Century of Universal “Anomalies” of Glasses
(
World Scientific
,
2022
), p. 28.
40.
V. V.
Sumarokov
,
A.
Jeźowski
,
D.
Szewczyk
,
A. V.
Dolbin
,
N. A.
Vinnikov
, and
M. I.
Bagatskii
, “
The low-temperature specific heat of thermal reduced graphene oxide
,”
Fiz. Nizk. Temp.
46
,
364
(
2020
) [
Low Temp. Phys.
46, 301 (2020)].
41.
V. A.
Lototskaya
,
L. F.
Yakovenko
,
E. N.
Aleksenko
,
V. V.
Abraimov
, and
W. Z.
Shao
, “
Regularities of low-temperature deformation and fracture of polyimide films of kapton h type of different thickness
,”
East Eur. J. Phys.
4
,
144
(
2020
).
42.
I. S.
Braude
,
N. N.
Gal’tsov
,
V. G.
Geidarov
,
G. I.
Kirichenko
, and
V. V.
Abraimov
, “
Effect of deformation and temperature on the ordering of polyimide PM-A molecules. X-ray data
,”
Fiz. Nizk. Temp.
42
,
264
(
2016
) [
Low Temp. Phys.
42, 204 (2016)].
43.
Y.
Miyazaki
,
M.
Nakano
,
A. I.
Krivchikov
,
O. A.
Koroyuk
,
J. F.
Gebbia
,
C.
Cazorla
, and
J.
Ll Tamarit
, “
Low-temperature heat capacity anomalies in ordered and disordered phases of normal and deuterated thiophene,
J. Phys. Chem. Lett.
12
,
2112
(
2021
).
44.
S.
Nakamura
,
T.
Fujii
,
S.
Matsukawa
,
M.
Katagiri
, and
H.
Fukuyama
, “
Specific heat, thermal conductivity, and magnetic susceptibility of cyanate ester resins—an alternative to commonly used epoxy resins
,”
Cryogenics
95
,
76
(
2018
).
45.
T.
Pérez-Castanẽda
,
R. J.
Jiménez-Riobóo
, and
M. A.
Ramos
, “
Two-level systems and boson peak remain stable in 110-million-year-old amber glass
,”
Phys. Rev. Lett.
112
,
165901
(
2014
).
46.
S. J.
Collocott
, “
The heat capacity of zerodur from 1.8 to 20 K
,”
J. Phys. C: Solid State Phys.
16
,
L13
(
1983
).
47.
S. J.
Collocott
, “
The low-temperature heat capacity of the polymer polyethylene terephthalate, in the range 0.4 to 15 K
,”
J. Phys. C: Solid State Phys.
20
,
2995
(
1987
).
48.
X.
Liu
,
H.
v Lohneysen
,
G.
Weiss
, and
J.
Arndt
, “
Low-temperature specific heat of compacted vitreous silica
,”
Zeitschrift für Physik B: Condens. Matter
99
,
49
(
1995
).
49.
X.
Liu
and
H.
v Löhneysen
, “
Specific-heat anomaly of amorphous solids at intermediate temperatures (1 to 30 K)
,”
Europhys. Lett.
33
,
617
(
1996
).
50.
S.
Kojima
,
V. N.
Novikov
,
M.
Kofu
, and
O.
Yamamuro
, “
Neutron scattering studies of static and dynamic correlation lengths in alkali metal borate glasses
,”
J. Non-Crystalline Solids
518
,
18
(
2019
).
51.
V. G.
Karpov
,
M. I.
Klinger
, and
P. N.
Ignatiev
, “
Atomic tunneling states and low-temperature anomalies of thermal properties in amorphous materials
,”
Solid State Commun.
44
,
333
(
1982
).
52.
L.
Gil
,
M. A.
Ramos
,
A.
Bringer
, and
U.
Buchenau
, “
Low-temperature specific heat and thermal conductivity of glasses
,”
Phys. Rev. Lett.
70
,
182
(
1993
).
53.
A.
Marruzzo
,
W.
Schirmacher
,
A.
Fratalocchi
, and
G.
Ruocco
, “
Heterogeneous shear elasticity of glasses: The origin of the boson peak
,”
Sci. Rep.
3
,
1
(
2013
).
54.
A. I.
Chumakov
, and
G.
Monaco
, “
Understanding the atomic dynamics and thermodynamics of glasses: Status and outlook
,”
J. Non-Crystalline Solids
407
,
126
(
2015
).
55.
A. I.
Chumakov
,
G.
Monaco
,
A.
Fontana
,
A.
Bosak
,
R. P.
Hermann
,
D.
Bessas
,
B.
Wehinger
,
W. A.
Crichton
,
M.
Krisch
,
R.
Rüffer
, ., “
Role of disorder in the thermodynamics and atomic dynamics of glasses
,”
Phys. Rev. Lett.
112
,
025502
(
2014
).
You do not currently have access to this content.