The temperature dependence of the thermal conductivity k(T) of the AsxS100-x glass system was studied down to 1.8 K in a wide range of various (x = 20, 28.6, 40, 45, and 50) compositions. Universal glass anomalies in k(T) were revealed. The temperature dependence k(T) ∼ T 2 onset at the lowest temperatures and plateau below 15 K were detected. The plateau formation is sample quality sensitive and composition-dependent. It was experimentally found that even with a slow cooling rate, several samples were cracked. Depending on the sample damage, the additional internal scattering process leads to the k(T) plateau suppression. The observed k(T) temperature dependence is similar to the glassy ceramics-like behavior.
REFERENCES
1.
2.
A. I.
Krivchikov
and A.
Jeżowski
, Thermal conductivity of glasses and disordered crystals, in Low-Temperature Thermal and Vibrational Properties of Disordered Solids
(World Scientific
, Europe
, 2022
), p. 69
.3.
R. C.
Zeller
, and R. O.
Pohl
, “Thermal conductivity and specific heat of noncrystalline solids
,” Phys. Rev. B
4
, 2029
(1971
). 4.
W. A.
Phillips
, “Tunneling states in amorphous solids
,” J. Low Temp. Phys.
7
, 351
(1972
). 5.
P. W.
Anderson
, B. I.
Halperin
, and M. M.
Varma
, “Anomalous low-temperature thermal properties of glasses and spin glasses
,” Philos. Mag.
25
, 1
(1972
). 6.
D. A.
Parshin
, “Interactions of soft atomic potentials and universality of low-temperature properties of glasses
,” Phys. Rev. B
49
, 9400
(1994
). 7.
D. G.
Cahill
, J. R.
Olson
, H. E.
Fischer
, S. K.
Watson
, R. B.
Stephens
, R. H.
Tait
, T.
Ashworth
, and R. O.
Pohl
, “Thermal conductivity and specific heat of glass ceramics
,” Phys. Rev. B
44
, 12226
(1991
). 8.
C. L.
Choy
, and D.
Greig
, “The low-temperature thermal conductivity of a semi-crystalline polymer, polyethylene terephthalate
,” J. Physics C: Solid State Phys.
8
, 3121
(1975
). 9.
W. A.
Little
, “The tranosport of heat between dissimilar solids at low temperatures
,” Can. J. Phys.
37
, 334
(1959
). 10.
E. T.
Swartz
and R. O.
Pohl
, “Thermal boundary resistance
,” Rev. Mod. Phys.
61
, 605
(1989
). 11.
R.
Holomb
, P.
Ihnatolia
, O.
Mitsa
, V.
Mitsa
, L.
Himics
, and M.
Veres
, “Modeling and first-principles calculation of low-frequency quasi-localized vibrations of soft and rigid As–S nanoclusters
,” Appl. Nanosci.
9
, 975
(2019
). 12.
B.
Hanna
and R. G.
Bohn
, “Thermal conductivity of Li2O⋅Al2O3⋅nSiO2 glass-ceramics between 5 and 100 K
,” J. Am. Ceram. Soc.
74
, 3035
(1991
). 13.
P.
Baloh
, V.
Tkáč
, R.
Tarasenko
, M.
Orendáč
, A.
Orendáčová
, O.
Mitsa
, V.
Mitsa
, R.
Holomb
, and A.
Feher
, “Relation between nanocluster approximation and soft-potential model, the role of keystone nanocluster in the thermal conductivity
,” J. Non Cryst. Solids.
600
, 122040
(2023
). 14.
D. G.
Cahill
, S. K.
Watson
, and R. O.
Pohl
, “Lower limit to the thermal conductivity of disordered crystals
,” Phys. Rev. B
46
, 6131
(1992
). 15.
E.
Duval
, A.
Boukenter
, and B.
Champagnon
, “Vibration eigenmodes and size of microcrystallites in glass: Observation by very-low-frequency Raman scattering
,” Phys. Rev. Lett.
56
, 2052
(1986
). 16.
V. K.
Malinovsky
, V. N.
Novikov
, A. P.
Sokolov
, and V. G.
Dodonov
, “Low-frequency Raman scattering on surface vibrational modes of microcrystals
,” Solid State Commun.
67
, 725
(1988
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.