The construction of a thermal conductivity measurement system designed for tiny molecules-based compounds is reported. We introduce complementary usage of chip-type RuO2 thermometers and E-type thermocouples in the sample part by using thin (ϕ 13μm) constantan and chromel wires. Two pairs of the constantan and chromel wires are used as lead wires for the four-terminal measurement of the resistance of RuO2 thermometers in the low-temperature region below about 20 K. Also, in the higher temperature region above 10 K up to room temperature with the overlapping range of 10-20 K, they are used as thermocouples for detecting temperature differences from that of the heat sink. We also compare a kind of resolution parameter of several sensors as a function of temperature to discuss the rational reason to select suitable sensors depending on the temperature region. Using the constructed apparatus, we report temperature dependences of the thermal conductivity of deuterated κ-(d8:BEDT-TTF)2Cu[N(CN)2]Br in a wide temperature range between 2 and 250 K. The result provides convincing evidence for the validity of the newly developed system for the thermal measurements of molecular crystals.

1.
Comprehensive Handbook of Calorimetry & Thermal Analysis
, edited by
M.
Sorai
(
John Wiley & Sons
,
2004
), p.
167
.
2.
N. W.
Ashcroft
and
N. D.
Mermin
,
Solid State Physics
(
Thomson Learning Inc.
,
1976
).
3.
W. J.
Parker
,
R. J.
Jenkins
,
C. P.
Butler
, and
G. L.
Abbott
,
J. Appl. Phys.
32
,
1679
(
1961
).
4.
T.
Baba
and
A.
Ono
,
Meas. Sci. Technol.
12
,
2046
(
2001
).
5.
E. F. M.
Van der Held
and
F. G.
Van Drunen
,
Physica
15
,
865
(
1949
).
6.
M. J.
Assael
,
K. D.
Antoniadis
,
I. N.
Metaxa
,
S. K.
Mylona
,
J.-A. M.
Assael
,
J.
Wu
, and
M.
Hu
,
Int. J. ThermoPhys.
36
,
3083
(
2015
).
7.
O.
Andersson
and
Y.
Nakazawa
,
Curr. Inorg. Chem.
4
,
2
(
2014
).
8.
J.
Morikawa
and
T.
Hashimoto
,
Jpn. J. Appl. Phys.
37
,
L1484
(
1998
).
9.
R.
Rosei
and
D. W.
Lynch
,
Phys. Rev. B
5
,
3883
(
1972
).
10.
C. A.
Paddock
and
G. L.
Eesley
,
J. Appl. Phys.
60
,
285
(
1986
).
11.
A. J.
Schmidt
,
X.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
12.
Y.
Iwasaki
,
H.
Yoshino
,
N.
Kuroda
,
K.
Kikuchi
, and
K.
Murata
,
J. Phys. Soc. Jpn.
84
,
054601
(
2015
).
13.
K.
Torizuka
and
H.
Tajima
,
Rev. Sci. Instrum.
76
,
033908
(
2005
).
14.
R. S.
Kwok
and
S. E.
Brown
,
Rev. Sci. Instrum.
61
,
809
(
1990
).
15.
Y.
Okada
,
M.
Uno
,
Y.
Nakazawa
,
K.
Sasai
,
K.
Matsukawa
, and
K.
Yoshimura
,
Y.
Kitaoka
.
Y.
Mori
, and
J.
Takeya
,
Phys. Rev. B
83
,
011305
(
2011
).
16.
T.
Nomoto
,
S.
Imajo
,
S.
Yamashita
,
H.
Akutsu
,
Y.
Nakazawa
, and
A. I.
Krivchikov
,
J. Therm. Anal. and Calorim.
135
,
2831
(
2019
).
17.
K.
Izawa
,
H.
Yamaguchi
,
T.
Sasaki
, and
Y.
Matsuda
,
Phys. Rev. Lett.
88
,
027002
(
2001
).
18.
S.
Kuhlmorgen
,
R.
Schonemann
,
E. L.
Green
,
J.
Muller
, and
J.
Wosnitza
,
J. Phys.: Condens. Matter
29
,
405604
(
2017
).
19.
K.
Kanoda
,
J. Phys. Soc. Jpn.
75
,
051007
(
2006
).
20.
M.
Dressel
,
J. Phys.: Condens. Matter
23
,
293201
(
2011
).
21.
M. A.
Tanatar
,
T.
Ishiguro
,
H.
Tanaka
, and
H.
Kobayashi
,
Phys. Rev. B
66
,
134503
(
2002
).
22.
T.
Nomoto
,
S.
Yamashita
,
H.
Akutsu
,
Y.
Nakazawa
, and
A. I.
Krivchikov
,
J. Phys. Soc. Jpn.
88
,
073601
(
2019
).
23.
L.
Demko
,
I.
Kezsmarki
,
M.
Csontos
,
S.
Bordacs
, and
G.
Mihaly
,
Eur. Phys. J. B
74
,
27
(
2010
).
24.
S.
Belin
,
K.
Behnia
, and
A.
Deluzet
,
Phys. Rev. Lett.
81
,
4728
(
1998
).
You do not currently have access to this content.