The work is devoted to the study of changes in the structural and physical properties of the precipitation-hardened CuCrZr alloy under the influence of low-temperature (77 K) quasihydroextrusion with various degrees of deformation at liquid nitrogen temperature with subsequent aging. Prior to quasihydroextrusion, commercial alloy samples were annealed and quenched from the premelting temperature to obtain a supersaturated solid solution of alloying elements in the copper matrix. After quasihydroextrusion, the microstructure, lattice constant, pole densities, tensile strength and yield strength, microhardness (in different cross-sections of the extrudate), and electrical conductivity of the CuCrZr alloy were studied depending on the degree of deformation by quasihydroextrusion. It is shown that the deformation degree determines the kinetics of decomposition of the supersaturated solid solution and its structure. As a result of extrusion, an anisotropic structure of the matrix and precipitates is formed, which also determines the anisotropy of material properties. Subsequent aging leads to a significant decrease in the anisotropy of properties. With an increase in the deformation degree during extrusion (before aging), a significant monotonous increase in physical and mechanical properties occurs. However, in the range of deformation degrees of 40–50%, an anomalous “jump” of all measured properties and structural parameters is observed. The study proposes a physical mechanism that explains the experimental results. The mechanism is based on the occurrence of two kinetically differently directed processes: dynamic aging and its inhibition due to an increase in the defectiveness of the material. The latter process manifests itself essentially at low temperatures. In general, low-temperature quasihydroextrusion makes it possible to obtain a complex of sufficiently high mechanical and electrical characteristics of the CuCrZr alloy at relatively low degrees of deformation for one extrusion cycle, which is facilitated by low deformation temperature.

1.
K.
Abib
,
H.
Azzeddine
,
K.
Tirsatine
,
T.
Baudin
,
A. L.
Helbert
,
F.
Brisset
,
B.
Alili
, and
D.
Bradai
,
Mat. Char.
118
,
527
(
2016
).
2.
C.
Zhao
,
X.
Zuo
,
E.
Wang
,
R.
Niu
, and
K.
Han
,
Mater. Sci. Eng. A
652
,
296
(
2016
).
3.
High Magnetic Field Science and its Application in the United States: Current Status and Future Directions
(
The National Academies Press
,
Washington, DC
,
2013
).
4.
M.
Okayasu
,
T.
Muranaga
, and
A.
Endo
,
J. Sci. Adv. Mater. Devices.
2
,
128
(
2017
).
5.
A.
Pokrovsky
,
S.
Fabritsiev
,
D.
Edvards
,
S.
Zinkle
, and
A.
Roweliffe
,
J. Nucl. Mater.
283
,
404
(
2000
).
6.
D.
Stork
,
P.
Agostini
,
J. L.
Boutard
,
D.
Buckthorpe
,
E.
Diegele
,
S. L.
Dudarev
,
C.
English
,
G.
Federici
,
M. R.
Gilbert
,
S.
Gonzalez
,
A.
Ibarra
,
Ch.
Linsmeier
,
A.
Li Puma
,
G.
Marbach
,
P. F.
Morris
,
L. W.
Packer
,
B.
Raj
,
M.
Rieth
,
M. Q.
Tran
,
D. J.
Ward
, and
S. J.
Zinkle
,
J. Nucl. Mater.
455
,
277
(
2014
).
7.
J. M.
Chen
,
X.
Liu
,
P. H.
Wang
,
P.
Huang
,
J. B.
Wang
,
L. Z.
Cai
,
F. Y.
Jin
,
X. B.
Zhu
,
Q.
Li
,
Y. Y.
Chen
,
Z. X.
Wei
,
M.
Xu
, and
X. R.
Duan
,
Nucl. Fusion
60
,
016005
(
2020
).
8.
V.
Slugeň
and
P.
Domonkoš
,
J. Nucl. Mater.
557
,
153164
(
2021
).
9.
C.
Linsmeier
,
B.
Unterberg
,
J. W.
Coenen
,
R. P.
Doerner
,
H.
Greuner
,
A.
Kreter
,
J.
Linke
, and
H.
Maier
,
Nucl. Fusion
57
,
092012
(
2017
).
10.
J.
Linke
,
J.
Du
,
T.
Loewenhoff
,
G.
Pintsuk
,
B.
Spilker
,
I.
Steudel
, and
M.
Wirtz
,
Matter Radiat. Extrem.
4
,
056201
(
2019
).
11.
M.
Cabibbo
,
A.
Fava
,
R.
Montanari
,
E.
Pakhomova
,
C.
Paoletti
,
M.
Richetta
, and
A.
Varone
,
Appl. Sci.
12
,
1822
(
2022
).
12.
N.
Guelton
and
M.
François
,
Metall Mater. Trans. A
51
,
1602
(
2020
).
13.
T. G.
Sousa
,
I. A. B.
Moura
,
F. C. G.
Filho
,
S. N.
Monteiro
, and
L. P.
Brandão
,
J. Mater. Res. Technol.
9
,
5953
(
2020
).
14.
M.
Kulczyk
,
B.
Zysk
,
M.
Lewandowska
, and
K. J.
Kurzydłowski
,
Phys. Status Solidi A
207
,
1136
(
2010
).
15.
R. Z.
Valiev
and
T. G.
Langdon
,
Prog. Mater. Sci.
51
,
881
(
2006
).
16.
I.
Shakhova
,
Z.
Yanushkevich
,
I.
Fedorova
,
A.
Belyakov
, and
R.
Kaibyshev
,
Mater. Sci. Eng. A
606
,
380
(
2014
).
17.
A. P.
Zhilyaev
,
I.
Shakhova
,
A.
Morozova
,
A.
Belyakov
, and
R.
Kaibyshev
,
Mater. Sci. Eng. A
654
,
131
(
2016
).
18.
G.
Purcek
,
H.
Yanar
,
M.
Demirtas
,
D. V.
Shangina
,
N. R.
Bochvar
, and
S. V.
Dobatkin
,
J. All. Comp.
816
,
152675
(
2020
).
19.
B. B.
Straumal
,
R.
Kulagin
,
L.
Klinger
,
E.
Rabkin
,
P. B.
Straumal
,
O. A.
Kogtenkova
, and
B.
Baretzky
,
Mater.
15
,
601
(
2022
).
20.
D. A.
Aksenov
,
R. N.
Asfandiyarov
,
G. I.
Raab
,
E. I.
Fakhretdinova
, and
M. A.
Shishkunova
,
Metals
11
,
1795
(
2021
).
21.
Ghader
Faraji
,
Hyoung Seop
Kim
, and
Hessam Torabzadeh
Kashi
,
Severe Plastic Deformation Methods, Processing and Properties
(
Elsevier
,
2018
).
22.
A. I.
Belyaeva
,
A. A.
Galuza
,
I. V.
Kolenov
,
A. A.
Savchenko
,
S. N.
Faizova
,
G. N.
Raab
, and
D. A.
Aksenov
,
Bull. Russian Acad. Sci. Phys.
76
,
764
(
2012
).
23.
A. I.
Belyaeva
,
A. A.
Galuza
,
I. V.
Kolenov
,
S. N.
Faizova
,
G. I.
Raab
, and
I. A.
Faizov
,
J. Nano-Electron. Phys.
8
,
04082
(
2016
).
24.
M.
Kulczyk
,
W.
Pachla
,
A.
Mazur
,
M.
Sus-Ryszkowska
,
N.
Krasilnikov
, and
K. J.
Kurzydłowski
,
Mater. Sci. Poland
25
,
991
(
2007
).
25.
G.
Kapoor
,
T.
Kvackaj
,
A.
Heczel
,
J.
Bidulská
,
R.
Kociško
,
Z.
Fogarassy
,
D.
Simcak
, and
J.
Gubicza
,
Mater.
13
,
2241
(
2020
).
26.
I. A.
Faizov
,
R. R.
Mulyukov
,
D. A.
Aksenov
,
S. N.
Faizova
,
N. V.
Zemlyakova
, and
K. R.
Cardoso
, and
Yu.
Zeng
,
Letters on Materials
8
,
110
(
2018
).
27.
A.
Vinogradov
,
Y.
Suzuki
,
T.
Ishida
,
K.
Kitagawa
, and
V. I.
Kopylov
,
Mater. Trans.
45
,
2187
(
2004
).
28.
A.
Vinogradov
,
V.
Patlan
,
Y.
Suzuki
,
K.
Kitagawa
, and
V. I.
Kopylov
,
Acta Mater.
50
,
1639
(
2002
).
29.
R. K.
Islamgaliev
,
K. M.
Nesterov
,
Y.
Champion
, and
R. Z.
Valiev
,
IOP Conf. Ser. Mater. Sci. Eng.
63
,
012118
(
2014
).
30.
G.
Kapoor
,
Y.
Huang
,
V. S.
Sarma
,
T. G.
Langdon
, and
J.
Gubicza
,
Mater. Sci. Eng. A
688
,
92
(
2017
).
31.
B.
Straumal
,
A.
Kilmametov
,
A.
Mazilkin
,
O.
Kogtenkova
,
B.
Baretzky
,
A.
Korneva
, and
P.
Zieba
, “
Diffusive and displacive phase transformations under high pressure torsion
,”
Acta Metall. Slovaca
25
,
230
(
2019
).
32.
M.
Besterci
and
K.
Sülleiová
,
Acta Metall. Slovaca
25
,
65
(
2019
).
33.
Y.
Sun
,
L.
Peng
,
G.
Huang
,
H.
Xie
,
X.
Mi
, and
X.
Liu
,
Mater. Sci. Eng. A
776
,
139009
(
2020
).
34.
D.
Simcák
,
T.
Kvackaj
,
R.
Kocisko
,
R.
Bidulsky
,
J.
Kepic
, and
V.
Puchy
,
Acta Metall. Slovaca
23
,
99
(
2017
).
35.
P. A.
Khaimovich
,
Fiz. Nizk. Temp.
44
,
463
(
2018
) [
Low Temp. Phys.
44, 349 (2018)].
36.
M. A.
Tikhonovsky
,
P. A.
Khaimovich
,
I. V.
Kolenov
,
N. A.
Shul’gin
, and
V. S.
Okovit
,
Fiz. Nizk. Temp.
48
,
293
(
2022
) [
Low Temp. Phys.
48, 264 (2022)].
37.
A. I.
Belyaeva
,
A. A.
Galuza
,
P. A.
Khaimovich
,
I. V.
Kolenov
,
A. A.
Savchenko
,
I. V.
Ryzhkov
,
A. F.
Shtan’
,
S. I.
Solodovchenko
, and
N. A.
Shul’gin
,
Probl. Atom. Sci. Technol.
1
,
170
(
2015
).
38.
A. I.
Belyaeva
,
A. A.
Galuza
,
P. A.
Khaimovich
,
I. V.
Kolenov
,
A. A.
Savchenko
,
S. I.
Solodovchenko
, and
N. A.
Shul’gin
,
Phys. Met. Metallogr.
117
,
1170
(
2016
).
39.
A.
Belyaeva
,
I.
Kolenov
,
P.
Khaimovich
,
A.
Galuza
, and
A.
Savchenko
,
Lect. Notes Mech. Eng.
,
271
(
2021
).
40.
M. F. C.
Ladd
and
R. A.
Palmer
,
Structure Determination by X-ray Crystallography
(
Plenum Press
,
New York
,
1993
).
41.
H.
Czichos
,
T.
Saito
, and
L. E.
Smith
,
Handbook of Materials Measurement Methods
(
Springer
,
Berlin, Heidelberg
,
2007
).
42.
A. R.
West
,
Solid State Chemistry and Its Applications
(
Wiley
,
New York
,
2014
).
43.
V. V.
Pustovalov
,
Fiz. Nizk. Temp.
34
,
871
(
2008
) [
Low Temp. Phys.
34, 683 (2008)].
44.
H.
Ibach
and
H.
Luth
,
Solid-state Physics: an Introduction to Principles of Materials Science
(
Springer
,
New York
,
2009
).
45.
I. S.
Batra
,
G. K.
Dey
,
U. D.
Kulkarni
, and
S.
Banerjee
,
Mater. Sci. Eng. A
356
,
32
(
2002
).
46.
X.
Tang
,
X.
Chen
,
F.
Sun
,
L.
Li
,
P.
Liu
,
H.
Zhou
,
S.
Fu
, and
A.
Li
,
J. Alloys Compd.
924
,
166627
(
2022
).
47.
G.
Purcek
,
H.
Yanar
,
M.
Demirtas
,
Y.
Alemdag
,
D. V.
Shangina
, and
S. V.
Dobatkin
,
Mater. Sci. Eng. A
649
,
114
(
2016
).
48.
A. H.
Huang
,
Y. F.
Wang
,
M. S.
Wang
,
L. Y.
Song
,
Y. S.
Li
,
L.
Gao
,
C. X.
Huang
, and
Y. T.
Zhu
,
Mater. Sci. Eng. A
746
,
211
(
2019
).
49.
A.
Meng
,
J.
Nie
,
K.
Wei
,
H.
Kang
,
Z.
Liu
, and
Y.
Zhao
,
Vacuum
167
,
329
(
2019
).
You do not currently have access to this content.