Two-dimensional electron systems offer an appealing platform to explore long-lived excitations arising due to collinear carrier scattering enabled by phase-space constraints at the Fermi surface. Recently it was found that these effects can boost excitation lifetimes over the fundamental bound set by Landau’s Fermi-liquid theory by a factor as large as ( T F / T ) α with α 2. Long-lived degrees of freedom possess the capability to amplify the response to weak perturbations, producing lasting collective memory effects. This leads to non-Newtonian hydrodynamics in 2D electron fluids driven by multiple viscous modes with scale-dependent viscosity. We describe these modes as Fermi surface modulations of odd parity evolving in space and time, and discuss their implications for experimental studies of electron hydrodynamics.

1.
R. N.
Gurzhi
,
Sov. Phys. Usp.
11
,
255
(
1968
).
2.
M.
Müller
,
J.
Schmalian
, and
L.
Fritz
, “
Graphene: A nearly perfect fluid
,”
Phys. Rev. Lett.
103
,
025301
(
2009
).
3.
A.
Tomadin
,
G.
Vignale
, and
M.
Polini
, “
A corbino disk viscometer for 2D quantum electron liquids
,”
Phys. Rev. Lett.
113
,
235901
(
2014
).
4.
A.
Principi
,
G.
Vignale
,
M.
Carrega
, and
M.
Polini
, “
Bulk and shear viscosities of the two-dimensional electron liquid in a doped graphene sheet
,”
Phys. Rev. B
93
,
125410
(
2016
).
5.
T.
Scaffidi
,
N.
Nandi
,
B.
Schmidt
,
A. P.
Mackenzie
, and
J. E.
Moore
, “
Hydrodynamic electron flow and Hall viscosity
,”
Phys. Rev. Lett.
118
,
226601
(
2017
).
6.
A.
Lucas
, and
K. C.
Fong
, “
Hydrodynamics of electrons in graphene
,”
J. Phys.: Condens. Matter
30
,
053001
(
2018
).
7.
K. A.
Guerrero-Becerra
,
F. M. D.
Pellegrino
, and
M.
Polini
, “
Magnetic hallmarks of viscous electron flow in graphene
,”
Phys. Rev. B
99
,
041407
(
2019
).
8.
B. N.
Narozhny
, and
M.
Schütt
, “
Magnetohydrodynamics in graphene: Shear and Hall viscosities
,”
Phys. Rev. B
100
,
035125
(
2019
).
9.
P. S.
Alekseev
, and
A. P.
Dmitriev
, “
Viscosity of two-dimensional electrons
,”
Phys. Rev. B
102
,
241409
(
2020
).
10.
R.
Toshio
,
K.
Takasan
, and
N.
Kawakami
, “
Anomalous hydrodynamic transport in interacting noncentrosymmetric metals
,”
Phys. Rev. Res.
2
,
032021
(
2020
).
11.
B. N.
Narozhny
,
I. V.
Gornyi
, and
M.
Titov
, “
Hydrodynamic collective modes in graphene
,”
Phys. Rev. B
103
,
115402
(
2021
).
12.
E. H.
Hasdeo
,
J.
Ekstrom
,
E. G.
Idrisov
, and
T. L.
Schmidt
, “
Electron hydrodynamics of two-dimensional anomalous Hall materials
,”
Phys. Rev. B
103
,
125106
(
2021
).
13.
M.
Qi
and
A.
Lucas
, “
Distinguishing viscous, ballistic, and diffusive current flows in anisotropic metals
,”
Phys. Rev. B
104
,
195106
(
2021
).
14.
C. Q.
Cook
, and
A.
Lucas
, “
Viscometry of electron fluids from symmetry
,”
Phys. Rev. Lett.
127
,
176603
(
2021
).
15.
D.
Valentinis
, and
J.
Zaanen
, and
D.
van der Marel
, “
Propagation of shear stress in strongly interacting metallic Fermi liquids enhances transmission of terahertz radiation
,”
Sci. Rep.
11
,
7105
(
2021
).
16.
D.
Valentinis
, “
Optical signatures of shear collective modes in strongly interacting Fermi liquids
,”
Phys. Rev. Res.
3
,
023076
(
2021
).
17.
J.
Hofmann
, and
S.
Das Sarma
, “
Collective modes in interacting two-dimensional tomographic Fermi liquids
,”
Phys. Rev. B
106
,
205412
(
2022
).
18.
H.
Guo
,
E.
Ilseven
,
G.
Falkovich
, and
L.
Levitov
, “
Higher-than-ballistic conduction of viscous electron flows
,”
Proc. Natl. Acad. Sci. U.S.A.
114
,
3068
(
2017
).
19.
A. V.
Shytov
,
J. F.
Kong
,
G.
Falkovich
, and
L. S.
Levitov
, “
Particle collisions and negative nonlocal response of ballistic electrons
,”
Phys. Rev. Lett.
121
,
176805
(
2018
).
20.
K. G.
Nazaryan
and
L. S.
Levitov
, “Nonlocal conductivity, continued fractions and current vortices in electron fluids,” arXiv:2111.09878.
21.
R. L.
Liboff
,
Kinetic Theory: Classical, Quantum, and Relativistic Descriptions
(
Springer-Verlag
,
New York
,
2003
).
23.
R. N.
Gurzhi
,
A. N.
Kalinenko
, and
A. I.
Kopeliovich
, “
Electron-electron collisions and a new hydrodynamic effect in two-dimensional electron gas
,”
Phys. Rev. Lett.
74
,
3872
(
1995
).
24.
H.
Buhmann
and
L. W.
Molenkamp
, “
1D diffusion: A novel transport regime in narrow 2DEG channels
,”
Physica E
12
,
715
(
2002
).
25.
C.
Hodges
,
H.
Smith
, and
J. W.
Wilkins
, “
Effect of Fermi surface geometry on electron-electron scattering
,”
Phys. Rev. B
4
,
302
(
1971
).
26.
A. V.
Chaplik
, “
Energy spectrum and electron scattering processes in inversion layers
,”
Zh. Eksp. Teor. Fiz.
60
,
1845
(
1971
) [Sov. Phys. JETP 33, 997 (1971)], http://jetp.ras.ru/cgi-bin/e/index/e/33/5/p997?a=list.
27.
P.
Bloom
, “
Two-dimensional Fermi gas
,”
Phys. Rev. B
12
,
125
(
1975
).
28.
G. F.
Giuliani
, and
J. J.
Quinn
, “
Lifetime of a quasiparticle in a two-dimensional electron gas
,”
Phys. Rev. B
26
,
4421
(
1982
).
29.
L.
Zheng
, and
S.
Das Sarma
, “
Coulomb scattering lifetime of a two-dimensional electron gas
,”
Phys. Rev. B
53
,
9964
(
1996
).
30.
D.
Menashe
, and
B.
Laikhtman
, “
Quasiparticle lifetime in a two-dimensional electron system in the limit of low temperature and excitation energy
,”
Phys. Rev. B
54
,
11561
(
1996
).
31.
A. V.
Chubukov
, and
D. L.
Maslov
, “
Nonanalytic corrections to the Fermi-liquid behavior
,”
Phys. Rev. B
68
,
155113
(
2003
).
32.
P. J.
Ledwith
,
H.
Guo
, and
L.
Levitov
, “Angular superdiffusion and directional memory in two-dimensional electron fluids,” arXiv:1708.01915
33.
P.
Ledwith
,
H.
Guo
,
A.
Shytov
, and
L.
Levitov
, “
Tomographic dynamics and scale-dependent viscosity in 2D electron systems
,”
Phys. Rev. Lett.
123
,
116601
(
2019
).
34.
P. J.
Ledwith
,
H.
Guo
, and
L.
Levitov
, “
The hierarchy of excitation lifetimes in two-dimensional Fermi gases
,”
Ann. Phys.
411
,
167913
(
2019
).
35.
J. A.
Sulpizio
,
L.
Ella
,
A.
Rozen
,
J.
Birkbeck
,
D. J.
Perello
,
D.
Dutta
,
M.
Ben-Shalom
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Holder
,
R.
Queiroz
,
A.
Principi
,
A.
Stern
,
T.
Scaffidi
,
A. K.
Geim
, and
S.
Ilani
, “
Visualizing poiseuille flow of hydrodynamic electrons
,”
Nature
576
,
75
(
2019
).
36.
M. J. H.
Ku
,
T. X.
Zhou
,
Q.
Li
,
Y. J.
Shin
,
J. K.
Shi
,
C.
Burch
,
L. E.
Anderson
,
A. T.
Pierce
,
Y.
Xie
,
A.
Hamo
,
U.
Vool
,
H.
Zhang
,
F.
Casola
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Fogler
,
P.
Kim
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Imaging viscous flow of the Dirac fluid in graphene
,”
Nature
583
,
537
(
2020
).
37.
B. A.
Braem
,
F. M. D.
Pellegrino
,
A.
Principi
,
M.
Roosli
,
C.
Gold
,
S.
Hennel
,
J. V.
Koski
,
M.
Berl
,
W.
Dietsche
,
W.
Wegscheider
,
M.
Polini
,
T.
Ihn
, and
K.
Ensslin
, “
Scanning gate microscopy in a viscous electron fluid
,”
Phys. Rev. B
98
,
241304(R)
(
2018
).
38.
U.
Vool
,
A.
Hamo
,
G.
Varnavides
,
Y.
Wang
,
T. X.
Zhou
,
N.
Kumar
,
Y.
Dovzhenko
,
Z.
Qiu
,
C. A. C.
Garcia
,
A. T.
Pierce
,
J.
Gooth
,
P.
Anikeeva
,
C.
Felser
,
P.
Narang
, and
A.
Yacoby
, “
Imaging phonon-mediated hydrodynamic flow in WTe2
,”
Nature Physics
17
,
1216
(
2021
).
39.
A.
Aharon-Steinberg
,
T.
Volkl
,
A.
Kaplan
,
A. K.
Pariari
,
I.
Roy
,
T.
Holder
,
Y.
Wolf
,
A. Y.
Meltzer
,
Y.
Myasoedov
,
M. E.
Huber
,
B.
Yan
,
G.
Falkovich
,
L. S.
Levitov
,
M.
Hucker
, and
E.
Zeldov
, “
Direct observation of vortices in an electron fluid
,”
Nature
607
,
74
(
2022
).
40.
G.
Baym
and
C.
Pethick
,
Landau Fermi-Liquid Theory: Concepts and Applications
(
Wiley
,
1991
).
41.
T.
Giamarchi
,
Quantum Physics in One Dimension
(
Clarendon Press
,
Oxford
,
2004
).
42.
S.
Kryhin
and
L.
Levitov
, “Collinear scattering and long-lived excitations in two-dimensional electron fluids,” arXiv:2112.05076.
43.
J.
Hofmann
and
U.
Gran
, “Anomalously long lifetimes in two-dimensional Fermi liquids,” arXiv preprint arXiv:2210.16300 (
2022
).
44.
S.
Kryhin
,
Q.
Hong
, and
L.
Levitov
, “T-linear conductance in electron hydrodynamics,” arXiv:2310.08556.
You do not currently have access to this content.