We study a two-dimensional (2D) electron system with a linear spectrum in the presence of Rashba spin-orbit (RSO) coupling in the hydrodynamic regime. We derive a semiclassical Boltzmann equation with a collision integral due to Coulomb interactions on the basis of the eigenstates of the system with RSO coupling. Using the local equilibrium distribution functions, we obtain a generalized hydrodynamic Navier–Stokes equation for electronic systems with RSO coupling. In particular, we discuss the influence of the spin-orbit coupling on the viscosity and the enthalpy of the system and present some of its observable effects in hydrodynamic transport.

1.
R. N.
Gurzhi
, “
Minimum of resistance in impurity free conductors
,”
Zh. Eksp. Teor. Fiz.
44
,
771
(
1963
); available at http://www.jetp.ras.ru/cgi-bin/e/index/e/17/2/p521?a=list.
2.
M. J. M.
de Jong
and
L. W.
Molenkamp
, “
Hydrodynamic electron flow in high-mobility wires
,”
Phys. Rev. B
51
,
13389
(
1995
).
3.
A. A.
Abrikosov
,
Fundamentals of the Theory of Metals
(
North Holland
,
Amsterdam
,
1988
).
4.
M.
Polini
and
A. K.
Geim
, “
Viscous electron fluids
,”
Phys. Today
73
,
28
(
2020
).
5.
J.
Zaanen
, “
Electrons go with the flow in exotic material systems
,”
Science
351
,
1026
(
2016
).
6.
D. Y. H.
Ho
,
I.
Yudhistira
,
N.
Chakraborty
, and
S.
Adam
, “
Theoretical determination of hydrodynamic window in monolayer and bilayer graphene from scattering rates
,”
Phys. Rev. B
97
,
121404
(
2018
).
7.
A.
Lucas
and
K. C.
Fong
, “
Hydrodynamics of electrons in graphene
,”
J. Phys. Cond. Matter
30
,
053001
(
2018
).
8.
J.
Crossno
,
J. K.
Shi
,
K.
Wang
,
X.
Liu
,
A.
Harzheim
,
L
cs, S.
Sachdev
,
P.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
T. A.
Ohki
, and
K. C.
Fong
, “
Observation of the dirac fluid and the breakdown of the Wiedemann–Franz law in graphene
,”
Science
351
,
1058
(
2016
).
9.
H.
Guo
,
E.
Ilseven
,
G.
Falkovich
, and
L. S.
Levitov
, “
Higher-than-ballistic conduction of viscous electron flows
,”
Proc. Nat. Acad. Sci.
114
,
3068
(
2017
).
10.
R.
Krishna Kumar
,
D. A.
Bandurin
,
F. M. D.
Pellegrino
,
Y.
Cao
,
A.
Principi
,
H.
Guo
,
G. H.
Auton
,
M.
Ben Shalom
,
L. A.
Ponomarenko
,
G.
Falkovich
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
L. S.
Levitov
,
M.
Polini
, and
A. K.
Geim
, “
Superballistic flow of viscous electron fluid through graphene constrictions
,”
Nature Phys.
13
,
1182
(
2017
).
11.
L.
Levitov
and
G.
Falkovich
, “
Electron viscosity, current vortices and negative nonlocal resistance in graphene
,”
Nature Phys.
12
,
672
(
2016
).
12.
F.
Ghahari
,
H.-Y.
Xie
,
T.
Taniguchi
,
K.
Watanabe
,
M. S.
Foster
, and
P.
Kim
, “
Enhanced thermoelectric power in graphene: Violation of the mott relation by inelastic scattering
,”
Phys. Rev. Lett.
116
,
136802
(
2016
).
13.
M. J. H.
Ku
,
T. X.
Zhou
,
Q.
Li
,
Y. J.
Shin
,
J. K.
Shi
,
C.
Burch
,
L. E.
Anderson
,
A. T.
Pierce
,
Y.
Xie
,
Hm, U.
Vool
,
H.
Zhang
,
F.
Casola
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Fogler
,
P.
Kim
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Imaging viscous flow of the dirac fluid in graphene
,”
Nature
583
,
537
(
2020
).
14.
E. H.
Hasdeo
,
J.
Ekström
,
E. G.
Idrisov
, and
T. L.
Schmidt
, “
Electron hydrodynamics of two-dimensional anomalous Hall materials
,”
Phys. Rev. B
103
,
125106
(
2021
).
15.
G.
Varnavides
,
A. S.
Jermyn
,
P.
Anikeeva
,
C.
Felser
, and
P.
Narang
, “
Electron hydrodynamics in anisotropic materials
,”
Nature Commun.
11
,
4710
(
2020
).
16.
S. S.
Apostolov
,
A.
Levchenko
, and
A. V.
Andreev
, “
Hydrodynamic Coulomb drag of strongly correlated electron liquids
,”
Phys. Rev. B
89
,
121104
(
2014
).
17.
W.
Chen
,
A. V.
Andreev
, and
A.
Levchenko
, “
Boltzmann–langevin theory of Coulomb drag
,”
Phys. Rev. B
91
,
245405
(
2015
).
18.
E. H.
Hasdeo
,
E. G.
Idrisov
, and
T. L.
Schmidt
, “
Coulomb drag of viscous electron fluids: Drag viscosity and negative drag conductivity
,”
Phys. Rev. B
107
,
L121107
(
2023
).
19.
B.
Coquinot
,
L.
Bocquet
, and
N.
Kavokine
, “
Quantum feedback at the solid-liquid interface: Flow-induced electronic current and its negative contribution to friction
,”
Phys. Rev. X
13
,
011019
(
2023
).
20.
S.
Zhu
,
G.
Bednik
, and
S.
Syzranov
, “
Weyl hydrodynamics in a strong magnetic field
,”
Phys. Rev. B
105
,
125132
(
2022
).
21.
A. C.
Keser
,
D. Q.
Wang
,
O.
Klochan
,
D. Y. H.
Ho
,
O. A.
Tkachenko
,
V. A.
Tkachenko
,
D.
Culcer
,
S.
Adam
,
I.
Farrer
,
D. A.
Ritchie
,
O. P.
Sushkov
, and
A. R.
Hamilton
, “
Geometric control of universal hydrodynamic flow in a two-dimensional electron fluid
,”
Phys. Rev. X
11
,
031030
(
2021
).
22.
R. J.
Doornenbal
,
M.
Polini
, and
R. A.
Duine
, “
Spin–vorticity coupling in viscous electron fluids
,”
J. Phys. Mater.
2
,
015006
(
2019
).
23.
M.
Matsuo
,
D. A.
Bandurin
,
Y.
Ohnuma
,
Y.
Tsutsumi
, and
S.
Maekawa
,
Spin hydrodynamic generation in graphene
(
2020
), arXiv:2005.01493 [cond-mat.mes-hall].
24.
X.
Chen
,
K.
Shehzad
,
L.
Gao
,
M.
Long
,
H.
Guo
,
S.
Qin
,
X.
Wang
,
F.
Wang
,
Y.
Shi
,
W.
Hu
,
Y.
Xu
, and
X.
Wang
, “
Graphene hybrid structures for integrated and flexible optoelectronics
,”
Adv. Mater.
32
,
1902039
(
2020
).
25.
A.
Castro Neto
,
V.
Kotov
,
J.
Nilsson
,
V.
Pereira
,
N.
Peres
, and
B.
Uchoa
, “
Adatoms in graphene
,”
Solid State Commun.
149
,
1094
(
2009
), recent Progress in Graphene Studies.
26.
M.
Gmitra
and
J.
Fabian
, “
Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics
,”
Phys. Rev. B
92
,
155403
(
2015
).
27.
Y. S.
Dedkov
,
M.
Fonin
,
U.
Rüdiger
, and
C.
Laubschat
, “
Rashba effect in the graphene/Ni(111) system
,”
Phys. Rev. Lett.
100
,
107602
(
2008
).
28.
D.
Marchenko
,
A.
Varykhalov
,
M. R.
Scholz
,
G.
Bihlmayer
,
E. I.
Rashba
,
A.
Rybkin
,
A. M.
Shikin
, and
O.
Rader
, “
Giant Rashba splitting in graphene due to hybridization with gold
,”
Nature Commun.
3
,
1232
(
2012
).
29.
D.
Marchenko
,
J.
Sánchez-Barriga
,
M. R.
Scholz
,
O.
Rader
, and
A.
Varykhalov
, “
Spin splitting of Dirac fermions in aligned and rotated graphene on Ir(111)
,”
Phys. Rev. B
87
,
115426
(
2013
).
30.
W.
Han
,
R. K.
Kawakami
,
M.
Gmitra
, and
J.
Fabian
, “
Graphene spintronics
,”
Nature Nanotechn.
9
,
794
(
2014
).
31.
C. L.
Kane
and
E. J.
Mele
, “
Quantum spin Hall effect in graphene
,”
Phys. Rev. Lett.
95
,
226801
(
2005
).
32.
C. L.
Kane
and
E. J.
Mele
, “
Z2 topological order and the quantum spin Hall effect
,”
Phys. Rev. Lett.
95
,
146802
(
2005
).
33.
M.
Kurpas
,
P. E.
Faria Junior
,
M.
Gmitra
, and
J.
Fabian
, “
Spin-orbit coupling in elemental two-dimensional materials
,”
Phys. Rev. B
100
,
125422
(
2019
).
34.
B. N.
Narozhny
, “
Electronic hydrodynamics in graphene
,”
Annals Phys.
411
,
167979
(
2019
).
35.
A. V.
Shytov
,
E. G.
Mishchenko
,
H.-A.
Engel
, and
B. I.
Halperin
, “
Small-angle impurity scattering and the spin Hall conductivity in two-dimensional semiconductor systems
,”
Phys. Rev. B
73
,
075316
(
2006
).
36.
J.
Rammer
and
H.
Smith
, “
Quantum field-theoretical methods in transport theory of metals
,”
Rev. Mod. Phys.
58
,
323
(
1986
).
37.
T.
Kita
, “
Introduction to nonequilibrium statistical mechanics with quantum field theory
,”
Progr. Theor. Phys.
123
,
581
(
2010
).
38.
P. I.
Arseev
, “
On the nonequilibrium diagram technique: Derivation, some features, and applications
,”
Phys.-Usp.
58
,
1159
(
2015
).
39.
E. G.
Idrisov
and
T. L.
Schmidt
, “
Entropy production in one-dimensional quantum fluids
,”
Phys. Rev. B
100
,
165404
(
2019
).
40.
L. D.
Landau
and
E. M.
Lifshitz
,
Fluid Mechanics
(
Pergamon Press
,
London
,
1959
).
41.
P. J.
Ledwith
,
H.
Guo
, and
L.
Levitov
, “
The hierarchy of excitation lifetimes in two-dimensional Fermi gases
,”
Annals Phys.
411
,
167913
(
2019
).
42.
K. W. K.
Shung
, “
Dielectric function and plasmon structure of stage-1 intercalated graphite
,”
Phys. Rev. B
34
,
979
(
1986
).
43.
C.
Zener
, “
Analytic atomic wave functions
,”
Phys. Rev.
36
,
51
(
1930
).
44.
F. M. D.
Pellegrino
,
I.
Torre
, and
M.
Polini
, “
Nonlocal transport and the Hall viscosity of two-dimensional hydrodynamic electron liquids
,”
Phys. Rev. B
96
,
195401
(
2017
).
You do not currently have access to this content.