We study a two-dimensional (2D) electron system with a linear spectrum in the presence of Rashba spin-orbit (RSO) coupling in the hydrodynamic regime. We derive a semiclassical Boltzmann equation with a collision integral due to Coulomb interactions on the basis of the eigenstates of the system with RSO coupling. Using the local equilibrium distribution functions, we obtain a generalized hydrodynamic Navier–Stokes equation for electronic systems with RSO coupling. In particular, we discuss the influence of the spin-orbit coupling on the viscosity and the enthalpy of the system and present some of its observable effects in hydrodynamic transport.
REFERENCES
1.
R. N.
Gurzhi
, “Minimum of resistance in impurity free conductors
,” Zh. Eksp. Teor. Fiz.
44
, 771
(1963
); available at http://www.jetp.ras.ru/cgi-bin/e/index/e/17/2/p521?a=list.2.
M. J. M.
de Jong
and L. W.
Molenkamp
, “Hydrodynamic electron flow in high-mobility wires
,” Phys. Rev. B
51
, 13389
(1995
). 3.
A. A.
Abrikosov
, Fundamentals of the Theory of Metals
(North Holland
, Amsterdam
, 1988
).4.
M.
Polini
and A. K.
Geim
, “Viscous electron fluids
,” Phys. Today
73
, 28
(2020
). 5.
J.
Zaanen
, “Electrons go with the flow in exotic material systems
,” Science
351
, 1026
(2016
). 6.
D. Y. H.
Ho
, I.
Yudhistira
, N.
Chakraborty
, and S.
Adam
, “Theoretical determination of hydrodynamic window in monolayer and bilayer graphene from scattering rates
,” Phys. Rev. B
97
, 121404
(2018
). 7.
A.
Lucas
and K. C.
Fong
, “Hydrodynamics of electrons in graphene
,” J. Phys. Cond. Matter
30
, 053001
(2018
). 8.
J.
Crossno
, J. K.
Shi
, K.
Wang
, X.
Liu
, A.
Harzheim
, L
cs, S.
Sachdev
, P.
Kim
, T.
Taniguchi
, K.
Watanabe
, T. A.
Ohki
, and K. C.
Fong
, “Observation of the dirac fluid and the breakdown of the Wiedemann–Franz law in graphene
,” Science
351
, 1058
(2016
). 9.
H.
Guo
, E.
Ilseven
, G.
Falkovich
, and L. S.
Levitov
, “Higher-than-ballistic conduction of viscous electron flows
,” Proc. Nat. Acad. Sci.
114
, 3068
(2017
). 10.
R.
Krishna Kumar
, D. A.
Bandurin
, F. M. D.
Pellegrino
, Y.
Cao
, A.
Principi
, H.
Guo
, G. H.
Auton
, M.
Ben Shalom
, L. A.
Ponomarenko
, G.
Falkovich
, K.
Watanabe
, T.
Taniguchi
, I. V.
Grigorieva
, L. S.
Levitov
, M.
Polini
, and A. K.
Geim
, “Superballistic flow of viscous electron fluid through graphene constrictions
,” Nature Phys.
13
, 1182
(2017
). 11.
L.
Levitov
and G.
Falkovich
, “Electron viscosity, current vortices and negative nonlocal resistance in graphene
,” Nature Phys.
12
, 672
(2016
). 12.
F.
Ghahari
, H.-Y.
Xie
, T.
Taniguchi
, K.
Watanabe
, M. S.
Foster
, and P.
Kim
, “Enhanced thermoelectric power in graphene: Violation of the mott relation by inelastic scattering
,” Phys. Rev. Lett.
116
, 136802
(2016
). 13.
M. J. H.
Ku
, T. X.
Zhou
, Q.
Li
, Y. J.
Shin
, J. K.
Shi
, C.
Burch
, L. E.
Anderson
, A. T.
Pierce
, Y.
Xie
, Hm, U.
Vool
, H.
Zhang
, F.
Casola
, T.
Taniguchi
, K.
Watanabe
, M. M.
Fogler
, P.
Kim
, A.
Yacoby
, and R. L.
Walsworth
, “Imaging viscous flow of the dirac fluid in graphene
,” Nature
583
, 537
(2020
). 14.
E. H.
Hasdeo
, J.
Ekström
, E. G.
Idrisov
, and T. L.
Schmidt
, “Electron hydrodynamics of two-dimensional anomalous Hall materials
,” Phys. Rev. B
103
, 125106
(2021
). 15.
G.
Varnavides
, A. S.
Jermyn
, P.
Anikeeva
, C.
Felser
, and P.
Narang
, “Electron hydrodynamics in anisotropic materials
,” Nature Commun.
11
, 4710
(2020
). 16.
S. S.
Apostolov
, A.
Levchenko
, and A. V.
Andreev
, “Hydrodynamic Coulomb drag of strongly correlated electron liquids
,” Phys. Rev. B
89
, 121104
(2014
). 17.
W.
Chen
, A. V.
Andreev
, and A.
Levchenko
, “Boltzmann–langevin theory of Coulomb drag
,” Phys. Rev. B
91
, 245405
(2015
). 18.
E. H.
Hasdeo
, E. G.
Idrisov
, and T. L.
Schmidt
, “Coulomb drag of viscous electron fluids: Drag viscosity and negative drag conductivity
,” Phys. Rev. B
107
, L121107
(2023
). 19.
B.
Coquinot
, L.
Bocquet
, and N.
Kavokine
, “Quantum feedback at the solid-liquid interface: Flow-induced electronic current and its negative contribution to friction
,” Phys. Rev. X
13
, 011019
(2023
). 20.
S.
Zhu
, G.
Bednik
, and S.
Syzranov
, “Weyl hydrodynamics in a strong magnetic field
,” Phys. Rev. B
105
, 125132
(2022
). 21.
A. C.
Keser
, D. Q.
Wang
, O.
Klochan
, D. Y. H.
Ho
, O. A.
Tkachenko
, V. A.
Tkachenko
, D.
Culcer
, S.
Adam
, I.
Farrer
, D. A.
Ritchie
, O. P.
Sushkov
, and A. R.
Hamilton
, “Geometric control of universal hydrodynamic flow in a two-dimensional electron fluid
,” Phys. Rev. X
11
, 031030
(2021
). 22.
R. J.
Doornenbal
, M.
Polini
, and R. A.
Duine
, “Spin–vorticity coupling in viscous electron fluids
,” J. Phys. Mater.
2
, 015006
(2019
). 23.
M.
Matsuo
, D. A.
Bandurin
, Y.
Ohnuma
, Y.
Tsutsumi
, and S.
Maekawa
, Spin hydrodynamic generation in graphene
(2020
), arXiv:2005.01493 [cond-mat.mes-hall].24.
X.
Chen
, K.
Shehzad
, L.
Gao
, M.
Long
, H.
Guo
, S.
Qin
, X.
Wang
, F.
Wang
, Y.
Shi
, W.
Hu
, Y.
Xu
, and X.
Wang
, “Graphene hybrid structures for integrated and flexible optoelectronics
,” Adv. Mater.
32
, 1902039
(2020
). 25.
A.
Castro Neto
, V.
Kotov
, J.
Nilsson
, V.
Pereira
, N.
Peres
, and B.
Uchoa
, “Adatoms in graphene
,” Solid State Commun.
149
, 1094
(2009
), recent Progress in Graphene Studies. 26.
M.
Gmitra
and J.
Fabian
, “Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics
,” Phys. Rev. B
92
, 155403
(2015
). 27.
Y. S.
Dedkov
, M.
Fonin
, U.
Rüdiger
, and C.
Laubschat
, “Rashba effect in the graphene/Ni(111) system
,” Phys. Rev. Lett.
100
, 107602
(2008
). 28.
D.
Marchenko
, A.
Varykhalov
, M. R.
Scholz
, G.
Bihlmayer
, E. I.
Rashba
, A.
Rybkin
, A. M.
Shikin
, and O.
Rader
, “Giant Rashba splitting in graphene due to hybridization with gold
,” Nature Commun.
3
, 1232
(2012
). 29.
D.
Marchenko
, J.
Sánchez-Barriga
, M. R.
Scholz
, O.
Rader
, and A.
Varykhalov
, “Spin splitting of Dirac fermions in aligned and rotated graphene on Ir(111)
,” Phys. Rev. B
87
, 115426
(2013
). 30.
W.
Han
, R. K.
Kawakami
, M.
Gmitra
, and J.
Fabian
, “Graphene spintronics
,” Nature Nanotechn.
9
, 794
(2014
). 31.
C. L.
Kane
and E. J.
Mele
, “Quantum spin Hall effect in graphene
,” Phys. Rev. Lett.
95
, 226801
(2005
). 32.
C. L.
Kane
and E. J.
Mele
, “Z2 topological order and the quantum spin Hall effect
,” Phys. Rev. Lett.
95
, 146802
(2005
). 33.
M.
Kurpas
, P. E.
Faria Junior
, M.
Gmitra
, and J.
Fabian
, “Spin-orbit coupling in elemental two-dimensional materials
,” Phys. Rev. B
100
, 125422
(2019
). 34.
B. N.
Narozhny
, “Electronic hydrodynamics in graphene
,” Annals Phys.
411
, 167979
(2019
). 35.
A. V.
Shytov
, E. G.
Mishchenko
, H.-A.
Engel
, and B. I.
Halperin
, “Small-angle impurity scattering and the spin Hall conductivity in two-dimensional semiconductor systems
,” Phys. Rev. B
73
, 075316
(2006
). 36.
J.
Rammer
and H.
Smith
, “Quantum field-theoretical methods in transport theory of metals
,” Rev. Mod. Phys.
58
, 323
(1986
). 37.
T.
Kita
, “Introduction to nonequilibrium statistical mechanics with quantum field theory
,” Progr. Theor. Phys.
123
, 581
(2010
). 38.
P. I.
Arseev
, “On the nonequilibrium diagram technique: Derivation, some features, and applications
,” Phys.-Usp.
58
, 1159
(2015
). 39.
E. G.
Idrisov
and T. L.
Schmidt
, “Entropy production in one-dimensional quantum fluids
,” Phys. Rev. B
100
, 165404
(2019
). 40.
41.
P. J.
Ledwith
, H.
Guo
, and L.
Levitov
, “The hierarchy of excitation lifetimes in two-dimensional Fermi gases
,” Annals Phys.
411
, 167913
(2019
). 42.
K. W. K.
Shung
, “Dielectric function and plasmon structure of stage-1 intercalated graphite
,” Phys. Rev. B
34
, 979
(1986
). 43.
C.
Zener
, “Analytic atomic wave functions
,” Phys. Rev.
36
, 51
(1930
). 44.
F. M. D.
Pellegrino
, I.
Torre
, and M.
Polini
, “Nonlocal transport and the Hall viscosity of two-dimensional hydrodynamic electron liquids
,” Phys. Rev. B
96
, 195401
(2017
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.