We study thermal conductivity in one-dimensional electronic fluids combining kinetic [R. Samanta, I. V. Protopopov, A. D. Mirlin, and D. B. Gutman, Thermal transport in one-dimensional electronic fluid, Phys. Rev. Lett. 122, 206801 (2019)] and hydrodynamic [I. V. Protopopov, R. Samanta, A. D. Mirlin, and D. B. Gutman, Anomalous hydrodynamics in one-dimensional electronic fluid, Phys. Rev. Lett. 126, 256801 (2021)] theories. The kinetic approach is developed by partitioning the Hilbert space into bosonic and fermionic sectors. We focus on the regime where the long-living thermal excitations are fermions and compute thermal conductivity. From the kinetic theory standpoint, the fermionic part of thermal conductivity is normal, while the bosonic one is anomalous, that scales as ω–1/3 and thus dominates in the infrared limit. The multi-mode hydrodynamic theory is obtained by projecting the fermionic kinetic equation on the zero modes of its collision integral. On a bare level, both theories agree and the thermal conductivity computed in hydrodynamic theory matches the result of the kinetic equation. The interaction between hydrodynamic modes leads to renormalization and consequently to anomalous scaling of the transport coefficients. In a four-mode regime, all modes are ballistic and the anomaly manifests itself in Kardar-Parisi-Zhang-like broadening with asymmetric power-law tails. “Heads” and “tails” of the pulses contribute equally to thermal conductivity, leading to ω–1/3 scaling of heat conductivity. In the three-mode regime, the system is in the universality class of a classical viscous fluid [Herbert Spohn, Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys. 154, 1191 (2014); O. Narayan and S. Ramaswamy, Anomalous heat conduction in one-dimensional momentum-conserving systems, Phys. Rev. Lett. 89, 200601 (2002)].

1.
R. N.
Guzrhi
, “
Gidrodimamicheskie effekty v tverdyx telax pri nizkix temperaturax
,”
Usp. Fiz. Nauk
94
,
689
(
1968
) [Hydrodynamic effects in solids at low temperature,
Sov. Phys. Usp.
11, 255 (1968)].
2.
D. A.
Bandurin
,
I.
Torre
,
R. K.
Kumar
,
M.
Ben Shalom
,
A.
Tomadin
,
A.
Principi
,
G. H.
Auton
,
E.
Khestanova
,
K. S.
Novoselov
,
I. V.
Grigorieva
,
L. A.
Ponomarenko
,
A. K.
Geim
, and
M.
Polini
, “
Negative local resistance caused by viscous electron backflow in graphene
,”
Science
351
,
1055
(
2016
).
3.
A. D.
Levin
,
G. M.
Gusev
,
E. V.
Levinson
,
Z. D.
Kvon
, and
A. K.
Bakarov
, “
Vorticity-induced negative nonlocal resistance in a viscous two-dimensional electron system
,”
Phys. Rev. B
97
,
245308
(
2018
).
4.
D. A.
Bandurin
,
A. V.
Shytov
,
L. S.
Levitov
,
R. K.
Kumar
,
A. I.
Berdyugin
,
M.
Ben Shalom
,
I. V.
Grigorieva
,
A. K.
Geim
, and
G.
Falkovich
, “
Fluidity onset in graphene
,”
Nat. Commun.
9
,
4533
(
2018
).
5.
A. I.
Berdyugin
,
S. G.
Xu
,
F. M. D.
Pellegrino
,
R.
Krishna Kumar
,
A.
Principi
,
I.
Torre
,
M.
Ben Shalom
,
T.
Taniguchi
,
K.
Watanabe
,
I. V.
Grigorieva
,
M.
Polini
,
A. K.
Geim
, and
D. A.
Bandurin
, “
Measuring Hall viscosity of graphene’s electron fluid
,”
Science
364
,
162
(
2019
).
6.
M.
Kim
,
S. G.
Xu
,
A. I.
Berdyugin
,
A.
Principi
,
S.
Slizovskiy
,
N.
Xin
,
P.
Kumaravadivel
,
W.
Kuang
,
M.
Hamer
,
R.
Krishna Kumar
,
R. V.
Gorbachev
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
V. I.
Falko
,
M.
Polini
, and
A. K.
Geim
, “
Control of electron-electron interaction in graphene by proximity screening
,”
Nat. Commun.
11
,
2339
(
2020
).
7.
A.
Gupta
,
J. J.
Heremans
,
G.
Kataria
,
M.
Chandra
,
S.
Fallahi
,
G. C.
Gardner
, and
M. J.
Manfra
, “
Hydrodynamic and ballistic transport over large length scales in GaAs/AlGaAs
,”
Phys. Rev. Lett.
126
,
076803
(
2021
).
8.
J. A.
Sulpizio
,
L.
Ella
,
A.
Rozen
,
J.
Birkbeck
,
D. J.
Perello
,
D.
Dutta
,
M.
Ben-Shalom
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Holder
,
R.
Queiroz
,
A.
Principi
,
A.
Stern
,
T.
Scaffidi
,
A. K.
Geim
, and
S.
Ilani
, “
Visualizing poiseuille flow of hydrodynamic electrons
,”
Nature
576
,
75
(
2019
).
9.
M. J. H.
Ku
,
T. X.
Zhou
,
Q.
Li
,
Y. J.
Shin
,
J. K.
Shi
,
C.
Burch
,
L. E.
Anderson
,
A. T.
Pierce
,
Y.
Xie
,
A.
Hamo
,
U.
Vool
,
H.
Zhang
,
F.
Casola
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Fogler
,
P.
Kim
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Imaging viscous flow of the dirac fluid in graphene
,”
Nature
583
,
537
(
2020
).
10.
A.
Jenkins
,
S.
Baumann
,
H.
Zhou
,
S. A.
Meynell
,
D.
Yang
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Lucas
,
A. F.
Young
, and
A. C. B.
Jayich
, “
Imaging the breakdown of ohmic transport in graphene
,”
Phys. Rev. Lett.
129
,
087701
(
2022
).
11.
U.
Vool
,
A.
Hamo
,
G.
Varnavides
,
Y.
Wang
,
T. X.
Zhou
,
N.
Kumar
,
Y.
Dovzhenko
,
Z.
Qiu
,
C. A. C.
Garcia
,
A. T.
Pierce
,
J.
Gooth
,
P.
Anikeeva
,
C.
Felser
,
P.
Narang
, and
A.
Yacoby
, “
Imaging phonon mediated hydrodynamic flow in WTe2
,
Nat. Phys.
17
,
1216
(
2021
).
12.
J.
Crossno
,
J. K.
Shi
,
K.
Wang
,
X.
Liu
,
A.
Harzheim
,
A.
Lucas
,
S.
Sachdev
,
P.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
T. A.
Ohki
, and
K. C.
Fong
, “
Observation of the dirac fluid and the breakdown of the wiedemann–franz law in graphene
,”
Science
351
,
1058
(
2016
).
13.
J.
Gooth
,
F.
Menges
,
N.
Kumar
,
V.
Süβ
,
C.
Shekhar
,
Y.
Sun
,
U.
Drechsler
,
R.
Zierold
,
C.
Felser
, and
B.
Gotsmann
, “
Thermal and electrical signatures of a hydrodynamic electron fluid in tungsten diphosphide
,”
Nat. Commun.
9
,
4093
(
2018
).
14.
O. E.
Raichev
,
G. M.
Gusev
,
A. D.
Levin
, and
A. K.
Bakarov
, “
Manifestations of classical size effect and electronic viscosity in the magnetoresistance of narrow two-dimensional conductors: Theory and experiment
,”
Phys. Rev. B
101
,
235314
(
2020
).
15.
D.
Taubert
,
G. J.
Schinner
,
C.
Tomaras
,
H. P.
Tranitz
,
W.
Wegscheider
, and
S.
Ludwig
, “
An electron jet pump: The venturi effect of a Fermi liquid,
J. Appl. Phys.
109
, 102412 (
2011
).
16.
P. J. W.
Moll
,
P.
Kushwaha
,
N.
Nandi
,
B.
Schmidt
, and
A. P.
Mackenzie
, “
Evidence for hydrodynamic electron flow in PdCoO2
,”
Science
351
,
1061
(
2016
).
17.
R.
Krishna Kumar
,
D. A.
Bandurin
,
F. M. D.
Pellegrino
,
Y.
Cao
,
A.
Principi
,
H.
Guo
,
G. H.
Auton
,
M.
Ben Shalom
,
L. A.
Ponomarenko
,
G.
Falkovich
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
L. S.
Levitov
,
M.
Polini
, and
A. K.
Geim
, “
Superballistic flow of viscous electron fluid through graphene constrictions
,”
Nat. Phys.
13
,
1182
(
2017
).
18.
B. A.
Braem
,
F. M. D.
Pellegrino
,
A.
Principi
,
M.
Rsli
,
C.
Gold
,
S.
Hennel
,
J. V.
Koski
,
M.
Berl
,
W.
Dietsche
,
W.
Wegscheider
,
M.
Polini
,
T.
Ihn
, and
K.
Ensslin
, “
Scanning gate microscopy in a viscous electron fluid
,”
Phys. Rev. B
98
,
241304
(
2018
).
19.
G. M.
Gusev
,
A. S.
Jaroshevich
,
A. D.
Levin
,
Z. D.
Kvon
, and
A. K.
Bakarov
, “
Stokes flow around an obstacle in viscous two-dimensional electron liquid
,”
Sci. Rep.
10
,
7860
(
2020
).
20.
G. M.
Gusev
,
A. S.
Jaroshevich
,
A. D.
Levin
,
Z. D.
Kvon
, and
A. K.
Bakarov
, “
Viscous magnetotransport and gurzhi effect in bilayer electron system
,”
Phys. Rev. B
103
,
075303
(
2021
).
21.
Z. J.
Krebs
,
W. A.
Behn
,
S.
Li
,
K. J.
Smith
,
K.
Watanabe
,
T.
Taniguchi
,
A.
Levchenko
, and
V. W.
Brar
, “
Imaging the breaking of electrostatic dams in graphene for ballistic and viscous fluids
,”
Science
379
,
671
(
2023
).
22.
J.
Geurs
,
Y.
Kim
,
K.
Watanabe
,
T.
Taniguchi
,
P.
Moon
, and
J. H.
Smet
, “
Rectification by hydrodynamic flow in an encapsulated graphene tesla valve
,” arXiv:2008.04862 (2020).
23.
S.
Samaddar
,
J.
Strasdas
,
K.
Janßen
,
S.
Just
,
T.
Johnsen
,
Z.
Wang
,
B.
Uzlu
,
S.
Li
,
D.
Neumaier
,
M.
Liebmann
, and
M.
Morgenstern
, “
Evidence for local spots of viscous electron flow in graphene at moderate mobility
,”
Nano Lett.
21
,
9365
(
2021
).
24.
C.
Kumar
,
J.
Birkbeck
,
J. A.
Sulpizio
,
D. J.
Perello
,
T.
Taniguchi
,
K.
Watanabe
,
O.
Reuven
,
T.
Scaffidi
,
A.
Stern
,
A. K.
Geim
, and
S.
Ilani
, “
Imaging hydrodynamic electrons flowing without landauer–sharvin resistance
,”
Nature
609
,
276
(
2022
).
25.
K. A.
Matveev
and
A. V.
Andreev
, “
Hybrid sound modes in one-dimensional quantum liquids
,”
Phys. Rev. Lett.
121
,
026803
(
2018
).
26.
K. A.
Matveev
and
A. V.
Andreev
, “
Two-fluid dynamics of one-dimensional quantum liquids in the absence of galilean invariance
,”
Phys. Rev. B
100
,
035418
(
2019
).
27.
B.
Bertini
,
M.
Collura
,
J.
De Nardis
, and
M.
Fagotti
, “
Transport in out-of-equilibrium XXZ chains: Exact profiles of charges and currents
,”
Phys. Rev. Lett.
117
,
207201
(
2016
).
28.
O. A.
Castro-Alvaredo
,
B.
Doyon
, and
T.
Yoshimura
, “
Emergent hydrodynamics in integrable quantum systems out of equilibrium
,”
Phys. Rev. X
6
,
041065
(
2016
).
29.
V. B.
Bulchandani
,
R.
Vasseur
,
C.
Karrasch
, and
J. E.
Moore
, “
Bethe-Boltzmann hydrodynamics and spin transport in the XXZ chain
,”
Phys. Rev. B
97
,
045407
(
2018
).
30.
B.
Doyon
, “
Lecture notes on generalised hydrodynamics
,”
SciPost Phys. Lect. Notes
18
(
2020
).
31.
B.
Bertini
,
F.
Heidrich-Meisner
,
C.
Karrasch
,
T.
Prosen
,
R.
Steinigeweg
, and
M.
Žnidarič
, “
Finite-temperature transport in one-dimensional quantum lattice models,”
Rev. Mod. Phys.
93
,
025003
(
2021
).
32.
A. F.
Andreev
, “
The hydrodynamics of two and one dimensional liquids
,”
Sov. Phys. JETP
51
,
1038
(
1980
).
33.
K.
Schwab
,
E.
Henriksen
,
J.
Worlock
, and
M.
Roukes
, “
Measurement of the quantum of thermal conductance
,”
Nature
404
,
974
(
2000
).
34.
M.
Meschke
,
W.
Guichard
, and
J. P.
Pekola
, “
Singlemode heat conduction by photons
,”
Nature
444
,
187
(
2006
).
35.
S.
Jezouin
,
F. D.
Parmentier
,
A.
Anthore
, et al, “
Quantum limit of heat flow across a single electronic channel
,”
Science
342
,
601
(
2013
).
36.
L.
Cui
,
W.
Jeong
,
S.
Hur
, et al, “
Quantized thermal transport in single-atom junctions
,”
Science
355
,
1192
(
2017
).
37.
E.
Sivre
,
A.
Anthore
,
F. D.
Parmentier
,
A.
Cavanna
,
U.
Gennser
,
A.
Ouerghi
,
Y.
Jin
, and
F.
Pierre
, “
Heat Coulomb blockade of one ballistic channel
,”
Nature
14
,
145
(
2018
).
38.
C.
Altimiras
,
H.
le Sueur
,
U.
Gennser
,
A.
Anthore
,
A.
Cavanna
,
D.
Mailly
, and
F.
Pierre
, “
Energy relaxation in the integer quantum Hall regime
,”
Phys. Rev. Lett.
109
,
026803
(
2012
).
39.
V.
Venkatachalam
,
S.
Hart
,
L.
Pfeiffer
,
K.
West
, and
A.
Yacoby
, “
Local thermometry of neutral modes on the quantum Hall edge
,”
Nat. Phys.
8
,
676
(
2012
).
40.
H.
Inoue
,
A.
Grivnin
,
Y.
Ronen
,
M.
Heiblum
,
V.
Umansky
, and
D.
Mahalu
, “
Proliferation of neutral modes in fractional quantum Hall states
,”
Nat. Comm.
5
,
4067
(
2014
).
41.
I. V.
Protopopov
,
D. B.
Gutman
,
M.
Oldenburg
, and
A. D.
Mirlin
, “
Dissipationless kinetics of one-dimensional interacting fermions
,”
Phys. Rev. B
89
,
161104
(
2014
).
42.
I. V.
Protopopov
,
D. B.
Gutman
,
P.
Schmitteckert
, and
A. D.
Mirlin
, “
Dynamics of waves in 1D electron systems: Density oscillations driven by population inversion
,”
Phys. Rev. B
87
,
045112
(
2013
).
43.
A.
Imambekov
and
L. I.
Glazman
, “
Universal theory of nonlinear luttinger liquids
,”
Science
323
,
228
(
2009
);
[PubMed]
Phenomenology of one-dimensional quantum liquids beyond the low-energy limit
,”
Phys. Rev. Lett.
102
,
126405
(
2009
).
[PubMed]
44.
A.
Imambekov
,
T. L.
Schmidt
, and
L. I.
Glazman
, “
One-dimensional quantum liquids: Beyond the luttinger liquid paradigm,
Rev. Mod. Phys.
84
,
1253
(
2012
).
45.
M.
Khodas
,
M.
Pustilnik
,
A.
Kamenev
, and
L. I.
Glazman
, “
Fermi-Luttinger liquid: Spectral function of interacting one-dimensional fermions
,”
Phys. Rev. B
76
,
155402
(
2007
).
46.
M.
Schick
, “
Flux quantization in a one-dimensional model
,”
Phys. Rev.
166
,
404
(
1968
).
47.
F. D. M.
Haldane
, “
Luttinger liquid theory of one-dimensional quantum fluids
,”
J. Physics C
14
,
2585
(
1981
).
48.
B.
Sakita
,
Quantum Theory of Many-Variable Systems and Fields
(
Wolrd Scientific
,
Singapore
,
1985
).
49.
A.
Jevicki
and
B.
Sakita
, “
The quantum collective field method and its application to the planar limit, Nuc
,”
Phys. B
165
,
511
(
1980
).
50.
I. V.
Protopopov
,
D. B.
Gutman
and
A. D.
Mirlin
, “
relaxation in luttinger liquids: Bose–Fermi duality
.”
Phys. Rev. B
90
,
125113
(
2014
).
51.
Eur. Phys. J.
47
,
193
(
2005
).
52.
M.
Stone
,
Bosonization
(
World Scientific
,
1994
).
53.
J.
von Delft
and
H.
Schoeller
, “
Bosonization for beginners-refermionization for experts
,”
Annalen Phys.
7
,
225
(
1998
).
54.
R.
Samanta
,
I. V.
Protopopov
,
A. D.
Mirlin
, and
D. B.
Gutman
, “
Thermal transport in one-dimensional electronic fluid
,”
Phys. Rev. Lett.
122
,
206801
(
2019
).
55.
I. V.
Protopopov
,
R.
Samanta
,
A. D.
Mirlin
, and
D. B.
Gutman
, “
Anomalous hydrodynamics in one-dimensional electronic fluid
,”
Phys. Rev. Lett.
126
,
256801
(
2021
).
56.
A. M.
Lunde
,
K.
Flensberg
, and
L. I.
Glazman
,
Phys. Rev. B
75
,
245418
(
2007
).
57.
K. A.
Matveev
and
A. V.
Andreev
, “
Equilibration of a spinless luttinger liquid
,”
Phys. Rev. B
85
,
041102
(
2012
).
58.
T.
Micklitz
,
J.
Rech
, and
K. A.
Matveev
, “
Transport properties of partially equilibrated quantum wires
,”
Phys. Rev. B
81
,
115313
(
2010
).
59.
K. A.
Matveev
and
A. V.
Andreev
, “
Scattering of hole excitations in a one-dimensional spinless quantum liquid
,”
Phys. Rev. B
86
,
045136
(
2012
).
60.
C. L.
Kane
and
M. P. A.
Fisher
, “
Thermal transport in a luttinger liquid
,”
Phys. Rev. Lett.
76
,
3192
(
1996
).
61.
A.
Levchenko
,
T.
Micklitz
,
J.
Rech
, and
K. A.
Matveev
, “
Transport in partially equilibrated inhomogeneous quantum wires
,”
Phys. Rev. B
82
,
115413
(
2010
).
62.
J. M.
Luttinger
, “
Theory of thermal transport coefficients
,”
Phys. Rev.
135
,
A1505
(
1964
).
63.
C.
Castellani
,
G.
Kotliar
, and
P. A.
Lee
, “
Fermi-liquid theory of interacting disordered systems and the scaling theory of the metal-insulator transition
,”
Phys. Rev. Lett.
59
,
323
(
1987
).
64.
H.
Spohn
,
Fluctuating hydrodynamics approach to equilibrium time correlations for anharmonic chains
, in: edited by,
S.
Lepri
,
Thermal Transport in Low Dimensions: From Statistical Physics to Nanoscale Heat Transfer., Lect. Not. Phys.
(
Springer
,
2016
), p. 107. arXiv:1505.05987.
65.
H.
Spohn
, “
Nonlinear fluctuating hydrodynamics for anharmonic chains
,”
J. Stat. Phys.
154
, 1191–1227 (
2014
).
66.
M.
Kulkarni
and
A.
Lamacraft
, “
From GPE to KPZ: Finite temperature dynamical structure factor of the 1D bose gas
,”
Phys. Rev. A
88
,
021603
(
2013
).
67.
V. B.
Bulchandani
,
S.
Gopalakrishnan
, and
E.
Ilievski
, “
Superdiffusion in spin chains
,”
J. Stat. Mech.
2021
,
084001
(
2021
).
68.
M.
Ljubotina
,
M.
Žnidarič
and
T.
Prosen
, “
Spin diffusion from an inhomogeneous quench in an integrable system
,”
Nat. Commun.
8
,
16117
(
2017
).
69.
M.
Ljubotina
,
M.
Žnidarič
, and
T.
Prosen
, “
Kardar-Parisi-Zhang physics in the quantum heisenberg magnet
,”
Phys. Rev. Lett.
122
,
210602
(
2019
).
70.
A.
Scheie
,
N. E.
Sherman
,
M.
Dupont
,
S. E.
Nagler
,
M. B.
Stone
,
G. E.
Granroth
,
J. E.
Moore
, and
D. A.
Tennant
, “
Detection of kardar–parisi–zhang hydrodynamics in a quantum heisenberg spin-1/2 chain
,”
Nat. Phys.
17
,
726
(
2021
).
71.
D.
Wei
,
A.
Rubio-Abadal
,
B.
Ye
,
F.
Machado
,
J.
Kemp
,
K.
Srakaew
,
S.
Hollerith
,
J.
Rui
,
S.
Gopalakrishnan
,
N. Y.
Yao
,
I.
Bloch
, and
J.
Zeiher
, “
Quantum gas microscopy of kardar–parisi–zhang superdiffusion
,”
Science
376
,
716
(
2022
).
72.
P. N.
Jepsen
,
J.
Amato-Grill
,
I.
Dimitrova
,
W. W.
Ho
,
E.
Demler
, and
W.
Ketterle
, “
Spin transport in a tunable heisenberg model realized with ultracold atoms
,”
Nature
588
,
403
(
2020
).
73.
H.
van Beijeren
, “
Exact results for anomalous transport in one-dimensional Hamiltonian systems
,”
Phys. Rev. Lett.
108
,
180601
(
2012
).
74.
M.
Prahofer
, Exact scaling functions for one-dimensional stationary KPZ growth, http://www-m5.ma.tum.de/KPZ.
75.
M.
Prahofer
and
H.
Spohn
, “
Exact scaling functions for one dimensional stationary KPZ growth
,”
J. Stat. Phys.
115
,
255
(
2004
).
76.
E.
Fermi
,
J.
Pasta
,
S.
Ulam
, and
M.
Tsingou
,
Studies of non-Linear Problems, FPU
, Document LA-1940.
Los Alamos National Laboratory
(
1955
).
77.
T.
Mai
,
A.
Dhar
, and
O.
Narayan
, “
Equilibration and universal heat conduction in Fermi–pasta–ulam chains
,”
Phys. Rev. Lett.
98
,
184301
(
2007
).
78.
A.
Pereverzev
, “
Fermi–pasta–ulam β lattice: Peierls equation and anomalous heat conductivity, phys
,”
Rev. E
68
,
056124
(
2003
).
79.
H.
Spohn
and
J.
Lukkarinen
, “
Anomalous energy transport in the FPU-β chain
,”
Commun. Pure Appl. Math.
61
,
1753
(
2008
).
80.
V. V.
Uchaikin
and
V. M.
Zolotarev
,
Chance and Stability, Stable Distributions and Their Applications
(
W. de Gruyter
,
Berlin
,
1999
).
81.
M.
Arzamasovs
,
F.
Bovo
, and
D. M.
Gangardt
, “
Kinetics of mobile impurities and correlation functions in one-dimensional superfluids at finite temperature
,”
Phys. Rev. Lett.
112
,
170602
(
2014
).
82.
K.
Samokhin
, “
Lifetime of excitations in a clean luttinger liquid
,”
J. Phys.: Condens. Matter
10
,
533
(
1998
).
83.
O.
Narayan
and
S.
Ramaswamy
, “
Anomalous heat conduction in one-dimensional momentum-conserving systems
,”
Phys. Rev. Lett.
89
,
200601
(
2002
).
84.
T.
Giamarchi
,
Quantum Physics in One Dimension
(
Clarendon Press,
Oxford
,
2004
).
85.
A. O.
Gogolin
,
A. A.
Nersesyan
, and
A. M.
Tsvelik
,
Bosonization in Strongly Correlated Systems
(
University Press, Cambridge
,
1998
).
86.
A.
Kamenev
,
Field Theory of Non Equilibrium Systems
(
Cambridge University Press
,
Cambridge
,
2011
).
87.
J.
Rammer
and
H.
Smith
, “
Quantum field-theoretical methods in transport theory of metals
,”
Rev. Mod. Phys.
58
,
323
(
1986
).
88.
J.
Lin
,
K. A.
Matveev
, and
M.
Pustilnik
, “
Thermalization of acoustic excitations in a strongly interacting one-dimensional quantum liquid
,”
Phys. Rev. Lett.
110
,
016401
(
2013
).
89.
The fermionic quasiparticles introduced in this way are advantageous over the original electrons of the model because their interaction vanishes in the low-energy limit. In particular, they have flat density of states at the Fermi surface. There is a similarity between the composite fermions defined in the Bose–Fermi Duality50 and exact quasiparticle computed within Bethe ansatz solutions (and used in the GHD framework).
90.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Elsevier
,
Oxford
,
1990
).
91.
K. A.
Matveev
, “
Sound in a system of chiral one dimensional fermions
,”
Phys. Rev. B
102
,
155401
(
2020
).
92.
K. A.
Matveev
and
A. V.
Andreev
, “
Hybrid sound modes in one-dimensional quantum liquids
,”
Phys. Rev. Lett.
121
,
026803
(
2018
).
93.
L.
Kadanoff
and
P.
Martin
, “
Hydrodynamic equations and correlation functions
,”
Ann. Phys.
24
,
419
(
1963
).
94.
P.
Kovtun
, “
Lectures on hydrodynamic fluctuations in relativistic theories
,”
J, Phys. A
45
,
473001
(
2012
).
You do not currently have access to this content.