We discuss various aspects of nonlocal electrical transport in anisotropic metals. For a metal with circular Fermi surface, the scattering rates entering the local conductivity and viscosity tensors are well-defined, corresponding to eigenfrequencies of the linearized collision operator. For anisotropic metals, we provide generalized formulas for these scattering rates and use a variational approximation to show how they relate to microscopic transition probabilities. We develop a simple model of a collision operator for a metal of arbitrary Fermi surface with finite number of quasi-conserved quantities, and derive expressions for the wavevector-dependent conductivity σ ( q ) and the spatially-varying conductivity σ ( x ) for a long, narrow channel. We apply this to the case of different rates for momentum-conserving and momentum-relaxing scattering, deriving closed-form expressions for σ ( q ) and σ ( x ) — beyond generalizing from circular to arbitrary Fermi surface geometry, this represents an improvement over existing methods which solve the relevant differential equation numerically rather than in closed form. For the specific case of a diamond Fermi surface, we show that, if transport signatures were interpreted via a model for a circular Fermi surface, the diagnosis of the underlying transport regime would differ based on experimental orientation and based on whether σ ( q ) or σ ( x ) was considered. Finally, we discuss the bulk conductivity. While the common lore is that “momentum”-conserving scattering does not affect bulk resistivity, we show that crystal momentum-conserving scattering — such as normal electron-electron scattering — can affect the bulk resistivity for an anisotropic Fermi surface. We derive a simple formula for this contribution.

1.
R. N.
Gurzhi
, “
Minimum of resistance in impurity-free conductors
,”
Sov. Phys. JETP
44
,
771
(
1963
).
2.
R. N.
Gurzhi
, “
Hydrodynamic effects in solids at low temperature
,”
Soviet Physics Uspekhi
11
,
255
(
1968
).
3.
L. W.
Molenkamp
, and
M. J.
De Jong
, “
Electron-electronscattering- induced size effects in a two-dimensional wire
,”
Phys. Rev. B
49
,
5038
(
1994
).
4.
M. J. M.
DeJong
, and
L. W.
Molenkamp
, “
Hydrodynamic electron flow in high-mobility wires
,”
Phys. Rev. B
51
,
13389
(
1995
).
5.
J.
Crossno
,
J. K.
Shi
,
K.
Wang
,
X.
Liu
,
A.
Harzheim
,
A.
Lucas
,
S.
Sachdev
,
P.
Kim
,
T.
Taniguchi
,
K.
Watanabe
,
T. A.
Ohki
, and
K. C.
Fong
, “
Observation of the dirac fluid and the breakdown of the wiedemann–franz law in graphene
,”
Science
351
,
1058
(
2016
).
6.
D. A.
Bandurin
,
I.
Torre
,
R.
Krishna Kumar
,
M.
Ben Shalom
,
A.
Tomadin
,
A.
Principi
,
G. H.
Auton
,
E.
Khestanova
,
K. S.
Novoselov
,
I. V.
Grigorieva
,
L. A.
Ponomarenko
,
A. K.
Geim
, and
M.
Polini
, “
Negative local resistance caused by viscous electron backflow in graphene
,”
Science
351
,
1055
(
2016
).
7.
R.
Krishna Kumar
,
D. A.
Bandurin
,
F. M. D.
Pellegrino
,
Y.
Cao
,
A.
Principi
,
H.
Guo
,
G. H.
Auton
,
M.
Ben Shalom
,
L. A.
Ponomarenko
,
G.
Falkovich
,
K.
Watanabe
,
T.
Taniguchi
,
I. V.
Grigorieva
,
L. S.
Levitov
,
M.
Polini
, and
A. K.
Geim
, “
Superballistic flow of viscous electron fluid through graphene constrictions
,”
Nature Phys.
13
,
1182
(
2017
).
8.
J. A.
Sulpizio
,
L.
Ella
,
A.
Rozen
,
J.
Birkbeck
,
D. J.
Perello
,
D.
Dutta
,
M.
Ben-Shalom
,
T.
Taniguchi
,
K.
Watanabe
,
T.
Holder
,
R.
Queiroz
,
A.
Principi
,
A.
Stern
,
T.
Scaffidi
,
A. K.
Geim
, and
S.
Ilani
, “
Visualizing poiseuille flow of hydrodynamic electrons
,”
Nature
576
,
75
(
2019
).
9.
M. J.
Ku
,
T. X.
Zhou
,
Q.
Li
,
Y. J.
Shin
,
J. K.
Shi
,
C.
Burch
,
L. E.
Anderson
,
A. T.
Pierce
,
Y.
Xie
,
A.
Hamo
,
U.
Vool
,
H.
Zhang
,
F.
Casola
,
T.
Taniguchi
,
K.
Watanabe
,
M. M.
Fogler
,
P.
Kim
,
A.
Yacoby
, and
R. L.
Walsworth
, “
Imaging viscous flow of the dirac fluid in graphene
,”
Nature
583
,
537
(
2020
). arXiv:1905.10791.
10.
C.
Kumar
,
J.
Birkbeck
,
J. A.
Sulpizio
,
D.
Perello
,
T.
Taniguchi
,
K.
Watanabe
,
O.
Reuven
,
T.
Scaffidi
,
A.
Stern
,
A. K.
Geim
, and
S.
Ilani
, “
Imaging hydrodynamic electrons flowing without landauer–sharvin resistance
,”
Nature
609
,
276
(
2022
).
11.
P. J. W.
Moll
,
P.
Kushwaha
,
N.
Nandi
,
B.
Schmidt
, and
A. P.
Mackenzie
, “
Evidence for hydrodynamic electron flow in PdCoO2
,”
Science
351
,
1061
(
2016
).
12.
M. D.
Bachmann
,
A. L.
Sharpe
,
A. W.
Barnard
,
C.
Putzke
,
M.
König
,
S.
Khim
,
D.
Goldhaber-Gordon
,
A. P.
Mackenzie
, and
P. J. W.
Moll
, “
Super-geometric electron focusing on the hexagonal Fermi surface of PdCoO2
,”
Nature Commun.
10
,
5081
(
2019
).
13.
P. H.
McGuinness
,
E.
Zhakina
,
M.
König
,
M. D.
Bachmann
,
C.
Putzke
,
P. J. W.
Moll
,
S.
Khim
, and
A. P.
Mackenzie
, “
Low-symmetry nonlocal transport in microstructured squares of delafossite metals
,”
Proceedings of the National Academy of Sciences
118
,
2113185118
(
2021
).
14.
M. D.
Bachmann
,
A. L.
Sharpe
,
G.
Baker
,
A. W.
Barnard
,
C.
Putzke
,
T.
Scaffidi
,
N.
Nandi
,
P. H.
Mcguinness
,
E.
Zhakina
,
M.
Moravec
,
S.
Khim
,
M.
König
,
D.
Goldhaber-Gordon
,
A. P.
Mackenzie
, and
P. J. W.
Moll
, “
Directional ballistic transport in the two-dimensional metal PdCoO2
,”
Nature Phys.
18
,
819
(
2022
).
15.
G.
Baker
,
T. W.
Branch
,
J.
Day
,
D.
Valentinis
,
M.
Oudah
,
P.
McGuinness
,
S.
Khim
,
P.
Surówka
,
R.
Moessner
,
J.
Schmalian
,
A. P.
Mackenzie
, and
D. A.
Bonn
, “
Non-local microwave electrodynamics in ultrapure PdCoO2
,” arXiv 10.48550/arXiv.2204.14239 (
2022
).
16.
E.
Zhakina
,
P. H.
McGuinness
,
M.
König
,
R.
Grasset
,
M. D.
Bachmann
,
S.
Khim
,
C.
Putzke
,
P. J. W.
Moll
,
M.
Konczykowski
, and
A. P.
Mackenzie
, “
Crossing the ballistic-ohmic transition via high energy electron irradiation
,”
Phys. Rev. B
107
,
094203
(
2023
).
17.
M. N.
Ali
,
J.
Xiong
,
S.
Flynn
,
J.
Tao
,
Q. D.
Gibson
,
L. M.
Schoop
,
T.
Liang
,
N.
Haldolaarachchige
,
M.
Hirschberger
,
N. P.
Ong
, and
R. J.
Cava
, “
Large, nonsaturating magnetoresistance in WTe2
,”
Nature
514
,
205
(
2014
).
18.
Z.
Zhu
,
X.
Lin
,
J.
Liu
,
B.
Fauqué
,
Q.
Tao
,
C.
Yang
,
Y.
Shi
, and
K.
Behnia
, “
Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2
,”
Phys. Rev. Lett.
114
,
176601
(
2015
).
19.
J.
Gooth
,
F.
Menges
,
N.
Kumar
,
V.
Süss
,
C.
Shekhar
,
Y.
Sun
,
U.
Drechsler
, and
R.
Zierold
, “
Thermal and electrical signatures of a hydrodynamic electron fluid in WP2
,”
Nature Commun.
9
,
4093
(
2018
), arXiv:1706.05925.
20.
M. R.
van Delft
,
Y.
Wang
,
C.
Putzke
,
J.
Oswald
,
G.
Varnavides
,
C. A.
Garcia
,
C.
Guo
,
H.
Schmid
,
V.
Süss
,
H.
Borrmann
,
J.
Diaz
,
Y.
Sun
,
C.
Felser
,
B.
Gotsmann
,
P.
Narang
, and
P. J.
Moll
, “
Sondheimer oscillations as a probe of non-ohmic flow in WP2 crystals
,”
Nature Commun.
12
,
4799
(
2021
).
21.
U.
Vool
,
A.
Hamo
,
G.
Varnavides
,
Y.
Wang
,
T. X.
Zhou
,
N.
Kumar
,
Y.
Dovzhenko
,
Z.
Qiu
,
C. A.
Garcia
,
A. T.
Pierce
,
J.
Gooth
,
P.
Anikeeva
,
C.
Felser
,
P.
Narang
, and
A.
Yacoby
, “
Imaging phonon-mediated hydrodynamic flow in WTe2
,”
Nature Phys.
17
,
1216
(
2021
).
22.
D.
Valentinis
,
G.
Baker
,
D. A.
Bonn
, and
J.
Schmalian
, “
Kinetic theory of the non-local electrodynamic response in anisotropic metals: Skin effect in 2D systems
,”
Phys. Rev. Res.
5
,
013212
(
2023
).
23.
M.
Qi
and
A.
Lucas
, “
Distinguishing viscous, ballistic, and diffusive current flows in anisotropic metals
,”
Phys. Rev. B
104
,
195106
(
2021
).
24.
G.
Varnavides
,
Y.
Wang
,
P. J.
Moll
,
P.
Anikeeva
, and
P.
Narang
, “
Mesoscopic finite-size effects of unconventional electron transport in PdCoO2
,”
Phys. Rev. Mater.
6
,
045002
(
2022
).
25.
G.
Varnavides
,
A. S.
Jermyn
,
P.
Anikeeva
, and
P.
Narang
,
Probing carrier interactions using electron hydrodynamics
, arXiv:2204.06004 (
2022
).
26.
N.
Ashcroft
and
N.
Mermin
,
Solid State Physics
, (
Holt-Saunders
,
1976
).
27.
K. G.
Nazaryan
and
L.
Levitov
,
Robustness of vorticity in electron fluids
, arXiv:2111.09878 (
2021
).
28.
G. E. H.
Reuter
, and
E. H.
Sondheimer
, “
The theory of the anomalous skin effect in metals
,”
Proceedings of the Royal Society A
195
,
336
(
1948
).
29.
R.
Dingle
, “
The anomalous skin effect and the reflectivity of metals I.
,”
Physica
19
,
311
(
1953
).
30.
A.
Lucas
, and
S.
Das Sarma
, “
Electronic sound modes and plasmons in hydrodynamic two-dimensional metals
,”
Phys. Rev. B
97
,
115449
(
2018
).
31.
C. Q.
Cook
, and
A.
Lucas
, “
Electron hydrodynamics with a polygonal Fermi surface
,”
Phys. Rev. B
99
,
235148
(
2019
).
32.
J. M.
Ziman
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
(
1960
).
33.
P. B.
Allen
,
Boltzmann Theory and Resistivity of Metals, in Quantum Theory of Real Materials
, edited by,
J. R.
Chelokowsky
and
S. G.
Louie
, (
Springer
,
NY
,
1996
), 1st ed., Chap. 17, pp.
219
250
.
34.
H.
Guo
,
E.
Ilseven
,
G.
Falkovich
, and
L. S.
Levitov
, “
Higher-than-ballistic conduction of viscous electron flows
,”
Proceedings of the National Academy of Sciences
114
,
3068
(
2017
).
35.
J.
Callaway
, “
Model for lattice thermal conductivity at low temperatures
,”
Phys. Rev.
113
,
1046
(
1959
).
36.
T.
Scaffidi
,
N.
Nandi
,
B.
Schmidt
,
A. P.
Mackenzie
, and
J. E.
Moore
, “
Hydrodynamic electron flow and Hall viscosity
,”
Phys. Rev. Lett.
118
,
226601
(
2017
).
37.
A.
Levchenko
, and
J.
Schmalian
, “
Transport properties of strongly coupled electron–phonon liquids
,”
Annals of Physics
419
,
168218
(
2020
).
38.
R.
Jaggi
, “
Electron-fluid model for dc size effect
,”
J. Appl. Phys.
69
,
816
(
1991
).
39.
D.
Forcella
,
J.
Zaanen
, and
D.
Valentinis
, and
D.
van der Marel
,
“electromagnetic properties of viscous charged fluids
,”
Phys. Rev. B
90
,
035143
(
2014
).
40.
C. W.
Beenakker
, and
H.
van Houten
, “
Boundary scattering and weak localization of electrons in a magnetic field
,”
Phys. Rev. B
38
,
3232
(
1988
).
41.
E. H.
Sondheimer
, “
The mean free path of electrons in metals
,”
Advances in Physics
50
,
499
(
2001
).
42.
P. S.
Alekseev
, “
Negative magnetoresistance in viscous flow of two-dimensional electrons
,”
Phys. Rev. Lett.
117
,
166601
(
2016
).
43.
L.
Fritz
and
T.
Scaffidi
,
Hydrodynamic electronic transport
, arXiv:2303.14205 (
2023
).
44.
A. A.
Abrikosov
and
I. M.
Khalatnikov
, “
The theory of a Fermi liquid (the properties of liquid 3He at low temperatures)
,”
Reports on Progress in Physics
22
,
329
(
1959
).
45.
S.
Conti
, and
G.
Vignale
, “
Elasticity of an electron liquid
,”
Phys. Rev. B
60
,
7966
(
1999
).
46.
I.
Tokatly
, and
O.
Pankratov
, “
Hydrodynamics beyond local equilibrium: Application to electron gas
,”
Phys. Rev. B
62
,
2759
(
2000
).
47.
D.
Valentinis
, “
Optical signatures of shear collective modes in strongly interacting Fermi liquids
,”
Phys. Rev. Res.
3
,
023076
(
2021
).
48.
P.
Ledwith
,
H.
Guo
,
A.
Shytov
, and
L.
Levitov
, “
Tomographic dynamics and scale-dependent viscosity in 2D electron systems
,”
Phys. Rev. Lett.
123
,
116601
(
2019
).
49.
H. K.
Pal
,
V. I.
Yudson
, and
D. L.
Maslov
, “
Resistivity of non-galilean-invariant Fermi- and non-Fermi liquids
,”
Lithuanian Journal of Physics
52
,
142
(
2012
).
50.
X.
Huang
and
A.
Lucas
, “
Electron-phonon hydrodynamics
,”
Phys. Rev. B
103
,
155128
(
2021
).
51.
P. J.
Ledwith
,
H.
Guo
, and
L.
Levitov
, “
The hierarchy of excitation lifetimes in two-dimensional Fermi gases
,”
Annals of Physics
411
,
167913
(
2019
).
52.
T.
Kawamura
and
S.
Das Sarma
, “
Phonon-scatteringlimited electron mobilities in AlxGa1−xAs/GaAs heterojunctions
,”
Phys. Rev. B
45
,
3612
(
1992
).
53.
D. Y.
Ho
,
I.
Yudhistira
,
N.
Chakraborty
, and
S.
Adam
, “
Theoretical determination of hydrodynamic window in monolayer and bilayer graphene from scattering rates
,”
Phys. Rev. B
97
,
121404(R)
(
2018
).
54.
A.
Aharon-Steinberg
,
T.
Völkl
,
A.
Kaplan
,
A. K.
Pariari
,
I.
Roy
,
T.
Holder
,
Y.
Wolf
,
A. Y.
Meltzer
,
Y.
Myasoedov
,
M. E.
Huber
,
B.
Yan
,
G.
Falkovich
,
L. S.
Levitov
,
M.
Hücker
, and
E.
Zeldov
, “
Direct observation of vortices in an electron fluid
,”
Nature
607
,
74
(
2022
).
55.
Y.
Wolf
,
A.
Aharon-Steinberg
,
B.
Yan
, and
T.
Holder
, “
Para-hydrodynamics from weak surface scattering in ultraclean thin flakes
,”
Nature Commun.
14
,
2334
(
2023
).
56.
The first term of Eq. (15) can be understood as follows: In the linearized Boltzmann equation, the total rate of change to δ f k due to scattering is k C k k δ f k . So, C k k can be understood as the rate of scattering from k to k if k were empty — i.e., if δ f k = f 0 ( E k ), this induces a rate of change of C k k f 0 ( E k ) in δ f k. This rate is related to the probability per unit time P k k of this transition occurring in equilibrium, except that the latter also includes an extra factor ( 1 f 0 ( E k ) ) for the probability that k is unoccupied. The second term of Eq. (15) applies to diagonal elements, and represents the inverse lifetime of state k.33 
57.
See Ref. 37 for a generalization of Eq. (41) to arbitrary slip length, and Ref. 38 for results for channels with different cross-sectional geometries.
58.
The ballistic result in Eq. (43) was found in Ref. 40 within a single-rate relaxation-time approximation (sRTA), i.e., γ c = γ r. Results for the ballistic regime for a spherical Fermi surface (found within the sRTA) for this and other cross-sectional geometries are reviewed in Ref. 41.
59.
The frequency-dependent shear viscosity arising from electron-electron interactions in a Galilean-invariant system in 2D or 3D is [Refs. 37, 39, and 4447].
You do not currently have access to this content.