The paper considers the influence of a heterogeneous (bimodal) grain structure on the ductility characteristics of commercial purity titanium in a wide range of low temperatures (4.2–395 K) as a strategy for optimizing mechanical properties within the framework of the “strength–plasticity” ratio. Using titanium as an example, the physical mechanism for increasing the low-temperature ductility of hcp nanocrystalline metals with a heterogeneous grain size distribution is explained by a combination of several processes: an increase in the activity of intragrain dislocation slip, dynamic grain growth under tensile stresses, and activation of nanotwinning in submicron-sized grains.
REFERENCES
1.
E. O.
Hall
, Proc. Phys. Soc., Sect. B
64
, 747
(1951
). 2.
N. J.
Petch
, J. Iron Steel Inst.
174
, 25
(1953
), see https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=426784.3.
J. C. M.
Li
, Trans. Metall. Soc. AIME
227
, 239
(1963
), see https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=426786.4.
A.
Meyers
, A.
Mishra
, and D. J.
Benson
, JOM
58
, 41
(2006
). 5.
Z. C.
Cordero
, B. E.
Knight
, and C. A.
Schuh
, Intern. Mater. Rev.
61
, 495
(2016
). 6.
H. V.
Swygenhoven
, P. M.
Derlet
, and A.
Hasnaoui
, Phys. Rev. B
66
, 024101
(2002
). 7.
S.
Cheng
, J. A.
Spencer
, and W. W.
Milligan
, Acta Mater.
51
, 4505
(2003
). 8.
9.
T. T.
Zhu
, A. J.
Bushby
, and D. J.
Dunstan
, Mater. Technol.
23
, 193
(2008
). 10.
T.
Christman
, Scr. Met. Mater.
28
, 1495
(1993
). 11.
K. S.
Kumar
, H.
Van Swygenhoven
, and S.
Suresh
, Acta Mater.
51
, 5743
(2003
). 12.
D.
Wu
, J.
Zhang
, J. C.
Huang
, H.
Bei
, and T.
Nieh
, Scr. Mater.
68
, 118
(2013
). 13.
D. J.
Dunstan
, and A. J.
Bushby
, Int. J. Plast.
53
, 56
(2014
). 14.
P. G.
Sanders
, J. A.
Eastman
, and J. R.
Weertman
, Acta Mater.
45
, 4019
(1997
). 15.
R. A.
Masumura
, P. M.
Hazzledine
, and C. S.
Pande
, Acta Mater.
46
, 4527
(1998
). 16.
R.
Zheng
, J-P.
Du
, S.
Gao
, H.
Somekawa
, Sh.
Ogata
, and N.
Tsuji
, Acta Mater.
198
, 35
(2020
). 17.
A. H.
Chokshi
, A.
Rosen
, J.
Karch
, and H.
Gleiter
, Scr. Met.
23
, 1679
(1989
). 18.
C. Y.
Yu
, P. W.
Kao
, and C. P.
Chang
, Acta Mater.
53
, 4019
(2005
). 19.
H. J.
Choi
, S. W.
Lee
, J. S.
Park
, and D. H.
Bae
, Mater. Trans.
50
, 640
(2009
). 20.
R. V.
Smolianets
, and V. A.
Moskalenko
, Fiz. Nizk. Temp.
45
, 947
(2019
) [Low Temp. Phys.
45, 811 (2019)]. 21.
R. W.
Hayes
, D.
Witkin
, F.
Zhou
, and E. J.
Lavernia
, Acta Mater.
52
, 4259
(2004
). 22.
X.
Wu
, and Y.
Zhu
, Mater. Res. Lett.
5
, 527
(2017
). 23.
T. H.
Fang
, W. L.
Li
, N. R.
Tao
, and K.
Lu
, Science
331
, 1587
(2011
). 24.
25.
Y.
Wei
, Y.
Li
, L.
Zhu
, Y.
Liu
, X.
Lei
, G.
Wang
, Y.
Wu
, Z.
Mi
, J.
Liu
, H.
Wang
, and H.
Gao
, Nat. Commun.
5
, 3580
(2014
). 26.
X.
Wu
, F.
Yuan
, M.
Yang
, P.
Jiang
, C.
Zhang
, L.
Chen
, Y.
Wei
, and E.
Ma
, Sci. Rep.
5
, 11728
(2015
). 27.
Y. S.
Li
, N. R.
Tao
, and K.
Lu
, Acta Mater.
56
, 230
(2008
). 28.
Y.
Wang
, M.
Chen
, F.
Zhou
, and E.
Ma
, Nature
419
, 912
(2002
). 29.
E.
Ma
, Y. M.
Wang
, Q. H.
Lu
, M. L.
Sui
, L.
Lu
, and K.
Lu
, Appl. Phys. Lett.
85
, 4932
(2004
). 30.
V. A.
Moskalenko
, A. R.
Smirnov
, and A. V.
Moskalenko
, Fiz. Nizk. Temp.
35
, 1160
(2009
) [Low Temp. Phys.
35, 905 (2009)]. 31.
A. R.
Smirnov
, and V. A.
Moskalenko
, Phys. Metals Metalogr.
66
, 162
(1988
).32.
V. A.
Moskalenko
, and A. R.
Smirnov
, Mater. Sci. Eng. A
246
, 282
(1998
). 33.
V. A.
Moskalenko
, A. R.
Smirnov
, and R. V.
Smolianets
, Fiz. Nizk. Temp.
40
, 1071
(2014
) [Low Temp. Phys.
40, 837 (2014)]. 34.
R. V.
Smolianets
, and V. A.
Moskalenko
, Fiz. Nizk. Temp.
43
, 1400
(2017
) [Low Temp. Phys.
43, 1122 (2017)]. 35.
B. E.
Warren
, and B. L.
Averbach
, J. Appl. Phys.
23
, 497
(1952
). 36.
M. A.
Krivoglaz
, Theory of X-ray and Thermal Neutron Scattering by Real Crystals
(Plenum Press
, New York
, 1969
).37.
A. I.
Gusev
, and A. A.
Rempel
, Nanocrystalline Materials
(Cambridge International Science Publishing
, Cambridge
, 2004
).38.
V. A.
Moskalenko
, V. I.
Startsev
, and V. N.
Kovaleva
, Cryogenics
20
, 503
(1980
). 39.
A. I.
Landau
, Phys. Status Solidi A
61
, 555
(1980
). 40.
V. A.
Moskalenko
, V. D.
Natsik
, V. N.
Kovaleva
, V. V.
Pustovalov
, and S. E.
Shumilin
, Fiz. Nizk. Temp.
22
, 1459
(1996
) [Low Temp. Phys.
22, 1108 (1996)].41.
V. A.
Moskalenko
, V. D.
Natsik
, and V. N.
Kovaleva
, Mater. Sci. Eng. A
309
, 173
(2001
). 42.
V. N.
Kovaleva
, V. A.
Moskalenko
, and V. D.
Natsik
, Philos. Mag.
70
, 423
(1994
). 43.
A.
Considère
, Ann. Ponts Chaussées
9
, 574
(1885
), see https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.aspx?referenceid=150122.44.
Yu. M.
Plotnikova
, I. S.
Braude
, and V. A.
Moskalenko
, Fiz. Nizk. Temp.
42
, 1503
(2016
) [Low Temp. Phys.
42, 1175 (2016)]. 45.
V. A.
Moskalenko
, A. R.
Smirnov
, Yu. M.
Plotnikova
, I. S.
Braude
, and R. V.
Smolianets
, Mater. Sci. Eng. A
700
, 707
(2017
). 46.
H.
Van Swygenhoven
, and J. R.
Weertman
, Scr. Mater.
49
, 625
(2003
). 47.
J. L.
Sun
, P. W.
Trimby
, F. K.
Yan
, X. Z.
Liao
, N. R.
Tao
, and J. T.
Wang
, Scr. Mater.
69
, 428
(2013
). 48.
V. A.
Moskalenko
, V. I.
Startsev
, and V. N.
Kovaleva
, Cryogenics
20
, 503
(1980
).49.
V. N.
Kovaleva
, and V. A.
Moskalenko
, Cryogenics
29
, 1002
(1989
). 50.
M. Yu.
Gutkin
, K. N.
Mikayelyan
, and I. A.
Ovid'ko
, Phys. Solid State
50
, 1266
(2008
). © 2023 Author(s). Published under an exclusive license by AIP Publishing.
2023
Author(s)
You do not currently have access to this content.