The paper considers the influence of a heterogeneous (bimodal) grain structure on the ductility characteristics of commercial purity titanium in a wide range of low temperatures (4.2–395 K) as a strategy for optimizing mechanical properties within the framework of the “strength–plasticity” ratio. Using titanium as an example, the physical mechanism for increasing the low-temperature ductility of hcp nanocrystalline metals with a heterogeneous grain size distribution is explained by a combination of several processes: an increase in the activity of intragrain dislocation slip, dynamic grain growth under tensile stresses, and activation of nanotwinning in submicron-sized grains.

1.
E. O.
Hall
,
Proc. Phys. Soc., Sect. B
64
,
747
(
1951
).
4.
A.
Meyers
,
A.
Mishra
, and
D. J.
Benson
,
JOM
58
,
41
(
2006
).
5.
Z. C.
Cordero
,
B. E.
Knight
, and
C. A.
Schuh
,
Intern. Mater. Rev.
61
,
495
(
2016
).
6.
H. V.
Swygenhoven
,
P. M.
Derlet
, and
A.
Hasnaoui
,
Phys. Rev. B
66
,
024101
(
2002
).
7.
S.
Cheng
,
J. A.
Spencer
, and
W. W.
Milligan
,
Acta Mater.
51
,
4505
(
2003
).
8.
9.
T. T.
Zhu
,
A. J.
Bushby
, and
D. J.
Dunstan
,
Mater. Technol.
23
,
193
(
2008
).
10.
T.
Christman
,
Scr. Met. Mater.
28
,
1495
(
1993
).
11.
K. S.
Kumar
,
H.
Van Swygenhoven
, and
S.
Suresh
,
Acta Mater.
51
,
5743
(
2003
).
12.
D.
Wu
,
J.
Zhang
,
J. C.
Huang
,
H.
Bei
, and
T.
Nieh
,
Scr. Mater.
68
,
118
(
2013
).
13.
D. J.
Dunstan
, and
A. J.
Bushby
,
Int. J. Plast.
53
,
56
(
2014
).
14.
P. G.
Sanders
,
J. A.
Eastman
, and
J. R.
Weertman
,
Acta Mater.
45
,
4019
(
1997
).
15.
R. A.
Masumura
,
P. M.
Hazzledine
, and
C. S.
Pande
,
Acta Mater.
46
,
4527
(
1998
).
16.
R.
Zheng
,
J-P.
Du
,
S.
Gao
,
H.
Somekawa
,
Sh.
Ogata
, and
N.
Tsuji
,
Acta Mater.
198
,
35
(
2020
).
17.
A. H.
Chokshi
,
A.
Rosen
,
J.
Karch
, and
H.
Gleiter
,
Scr. Met.
23
,
1679
(
1989
).
18.
C. Y.
Yu
,
P. W.
Kao
, and
C. P.
Chang
,
Acta Mater.
53
,
4019
(
2005
).
19.
H. J.
Choi
,
S. W.
Lee
,
J. S.
Park
, and
D. H.
Bae
,
Mater. Trans.
50
,
640
(
2009
).
20.
R. V.
Smolianets
, and
V. A.
Moskalenko
,
Fiz. Nizk. Temp.
45
,
947
(
2019
) [
Low Temp. Phys.
45, 811 (2019)].
21.
R. W.
Hayes
,
D.
Witkin
,
F.
Zhou
, and
E. J.
Lavernia
,
Acta Mater.
52
,
4259
(
2004
).
22.
X.
Wu
, and
Y.
Zhu
,
Mater. Res. Lett.
5
,
527
(
2017
).
23.
T. H.
Fang
,
W. L.
Li
,
N. R.
Tao
, and
K.
Lu
,
Science
331
,
1587
(
2011
).
25.
Y.
Wei
,
Y.
Li
,
L.
Zhu
,
Y.
Liu
,
X.
Lei
,
G.
Wang
,
Y.
Wu
,
Z.
Mi
,
J.
Liu
,
H.
Wang
, and
H.
Gao
,
Nat. Commun.
5
,
3580
(
2014
).
26.
X.
Wu
,
F.
Yuan
,
M.
Yang
,
P.
Jiang
,
C.
Zhang
,
L.
Chen
,
Y.
Wei
, and
E.
Ma
,
Sci. Rep.
5
,
11728
(
2015
).
27.
Y. S.
Li
,
N. R.
Tao
, and
K.
Lu
,
Acta Mater.
56
,
230
(
2008
).
28.
Y.
Wang
,
M.
Chen
,
F.
Zhou
, and
E.
Ma
,
Nature
419
,
912
(
2002
).
29.
E.
Ma
,
Y. M.
Wang
,
Q. H.
Lu
,
M. L.
Sui
,
L.
Lu
, and
K.
Lu
,
Appl. Phys. Lett.
85
,
4932
(
2004
).
30.
V. A.
Moskalenko
,
A. R.
Smirnov
, and
A. V.
Moskalenko
,
Fiz. Nizk. Temp.
35
,
1160
(
2009
) [
Low Temp. Phys.
35, 905 (2009)].
31.
A. R.
Smirnov
, and
V. A.
Moskalenko
,
Phys. Metals Metalogr.
66
,
162
(
1988
).
32.
V. A.
Moskalenko
, and
A. R.
Smirnov
,
Mater. Sci. Eng. A
246
,
282
(
1998
).
33.
V. A.
Moskalenko
,
A. R.
Smirnov
, and
R. V.
Smolianets
,
Fiz. Nizk. Temp.
40
,
1071
(
2014
) [
Low Temp. Phys.
40, 837 (2014)].
34.
R. V.
Smolianets
, and
V. A.
Moskalenko
,
Fiz. Nizk. Temp.
43
,
1400
(
2017
) [
Low Temp. Phys.
43, 1122 (2017)].
35.
B. E.
Warren
, and
B. L.
Averbach
,
J. Appl. Phys.
23
,
497
(
1952
).
36.
M. A.
Krivoglaz
,
Theory of X-ray and Thermal Neutron Scattering by Real Crystals
(
Plenum Press
,
New York
,
1969
).
37.
A. I.
Gusev
, and
A. A.
Rempel
,
Nanocrystalline Materials
(
Cambridge International Science Publishing
,
Cambridge
,
2004
).
38.
V. A.
Moskalenko
,
V. I.
Startsev
, and
V. N.
Kovaleva
,
Cryogenics
20
,
503
(
1980
).
39.
A. I.
Landau
,
Phys. Status Solidi A
61
,
555
(
1980
).
40.
V. A.
Moskalenko
,
V. D.
Natsik
,
V. N.
Kovaleva
,
V. V.
Pustovalov
, and
S. E.
Shumilin
,
Fiz. Nizk. Temp.
22
,
1459
(
1996
) [
Low Temp. Phys.
22, 1108 (1996)].
41.
V. A.
Moskalenko
,
V. D.
Natsik
, and
V. N.
Kovaleva
,
Mater. Sci. Eng. A
309
,
173
(
2001
).
42.
V. N.
Kovaleva
,
V. A.
Moskalenko
, and
V. D.
Natsik
,
Philos. Mag.
70
,
423
(
1994
).
44.
Yu. M.
Plotnikova
,
I. S.
Braude
, and
V. A.
Moskalenko
,
Fiz. Nizk. Temp.
42
,
1503
(
2016
) [
Low Temp. Phys.
42, 1175 (2016)].
45.
V. A.
Moskalenko
,
A. R.
Smirnov
,
Yu. M.
Plotnikova
,
I. S.
Braude
, and
R. V.
Smolianets
,
Mater. Sci. Eng. A
700
,
707
(
2017
).
46.
H.
Van Swygenhoven
, and
J. R.
Weertman
,
Scr. Mater.
49
,
625
(
2003
).
47.
J. L.
Sun
,
P. W.
Trimby
,
F. K.
Yan
,
X. Z.
Liao
,
N. R.
Tao
, and
J. T.
Wang
,
Scr. Mater.
69
,
428
(
2013
).
48.
V. A.
Moskalenko
,
V. I.
Startsev
, and
V. N.
Kovaleva
,
Cryogenics
20
,
503
(
1980
).
49.
V. N.
Kovaleva
, and
V. A.
Moskalenko
,
Cryogenics
29
,
1002
(
1989
).
50.
M. Yu.
Gutkin
,
K. N.
Mikayelyan
, and
I. A.
Ovid'ko
,
Phys. Solid State
50
,
1266
(
2008
).
You do not currently have access to this content.