An evident coupling between acoustic (AE) and electromagnetic (EME) emissions has been proved experimentally during plastic deformation of LiF ionic monocrystals under uniaxial compression with simultaneous recording of both AE and EME. The strong correlation between AE and EME demonstrate clearly that the observed EME is caused by dynamical dislocations and charged vacancies in the ionic lattice during work hardening. The theoretical interpretation proposed to explain the observable EME is based on the well-known Stepanov effect that means sweeping-up the charged vacancies of a preferable sign by gliding edge dislocations and formation of charged Cottrell clouds. During work hardening dislocation pile-ups are formed, and a certain nonequilibrium charge density is accumulated at their heads, resulting to the dynamic electric polarization of the deformed crystal. As the external loading increases, a locked dislocation pile-up bursts through the stoppers and quickly loses its bound charge. The relaxation of this charge produces intrinsic polarization currents generating electric pulses strongly correlated with dynamic dislocation process during plastic deformation. To build the theoretical model, it is assumed that the relaxation current can be described as an athermic viscous motion of vacancies under the kinetic friction force ∼ (B is the friction coefficient and υ is the vacancy velocity) in a self-consistent electric field determined by the distribution of the total charge density. The electrical signal generated by an acting slip system has been calculated. By comparing the calculated and experimentally measured electric signal patterns, the friction coefficient for the linear chain of vacancies (the analogue of an edge dislocation extra-plane) in LiF has been estimated to be B 0.9⋅10–5 g cm–1⋅s–1. This value is in accordance with the corresponding coefficient for dislocations in ionic lattices.

1.
M.
Born
, and
K.
Huang
,
Dynamical Theory of Crystal Lattices
(
Clarendon Press
,
Oxford
,
1954
).
2.
G.
Leibfried
,
Gittertheorie der Mechanischen und Thermischen Eigenschaften der Kristalle
(
Springer-Verlag
,
Berlin
,
1955
).
3.
V.
Hadjicontis
,
C.
Mavromatou
,
T. N.
Antsygina
, and
K. A.
Chishko
, “
Mechanism of electromagnetic emission in plastically deformed ionic crystal
,”
Phys. Rev. B
76
,
024106
(
2007
).
4.
V.
Hadjicontis
,
C.
Mavromatou
,
D.
Mastrogiannis
,
T. N.
Antsygina
, and
K. A.
Chishko
, “
Relationship between electromagnetic and acoustic emissions during plastic deformation of gamma-irradiated LiF monocrystals
,”
J. Appl. Phys.
110
,
024907
(
2007
).
5.
D.
Mastrogiannis
,
T. N.
Antsygina
,
C.
Mavromatou
,
V.
Hadjicontis
, and
K. A.
Chishko
, “
Relationship between electromagnetic and acoustic emissions in deformed piezoelectric media: Microcracking signals
,”
Int. J. Solids and Structures
56–57
,
118
(
2015
).
6.
V. S.
Boiko
,
R. I.
Garber
,
L. F.
Krivenko
, and
S. S.
Krivula
,
Sov. Phys.: Solid State
11
,
3041
(
1970
).
7.
V. S.
Boiko
,
R. I.
Garber
,
V. F.
Kivshik
, and
L. F.
Krivenko
,
Sov. Phys.: JETP
44
,
372
(
1976
).
8.
J.
Baram
, and
J.
Rosen
,
Acta Metall.
30
,
655
(
1981
).
9.
K. A.
Chishko
,
Sov. Phys.: Solid State
31
,
476
(
1989
).
10.
K. A.
Chishko
,
Sov. Phys.: Solid State
34
,
462
(
1992
).
11.
K. A.
Chishko
,
Sov. Phys.: Acoustics
36
,
84
(
1990
).
12.
K. A.
Chishko
,
Phys.: Solid State
36
,
1169
(
1994
).
13.
D. R.
James
, and
S. N.
Carpenter
,
J. Appl. Phys.:
42
,
4685
(
1971
).
14.
V. S.
Boiko
, and
L. F.
Krivenko
,
Sov. Phys.: JETP
53
,
129
(
1981
).
15.
V. S.
Boiko
and
L. F.
Krivenko
,
Sov. Phys.: Solid State
30
,
410
(
1988
).
16.
L.
Manosa
,
A.
Planes
,
D.
Rouby
, and
J. L.
MacQueron
,
Acta Metall.
38
,
1635
(
1990
).
17.
T. N.
Antsygina
, and
K. A.
Chishko
,
Phys.: Solid State
35
,
898
(
1993
).
18.
A. M.
Kosevich
,
Sov. Phys.: Uspekhi
7
,
837
(
1964
).
19.
A. M.
Kosevich
,
Dislocations in the Theory of Elasticity
(
Naukova Dumka
,
Kiev
,
1978
) [in Russian].
20.
G.
Stenzel
,
Phys. Status Solidi
34
,
351
(
1969
).
21.
A. V.
Stepanov
,
Phys. Z. Sowj.
4
,
609
(
1933
).
22.
A. V.
Stepanov
,
Z. Phys.
81
,
560
(
1933
).
23.
R. W.
Whitworth
,
Adv. Phys.
24
,
203
(
1975
).
24.
R. W.
Whitworth
,
Philos. Mag.
15
,
305
(
1967
).
25.
A.
Huddart
, and
R. W.
Whitworth
,
Philos. Mag.
27
,
107
(
1973
).
26.
R. M.
Turner
, and
R. W.
Whitworth
,
Philos. Mag.
21
,
1187
(
1970
).
27.
R. W.
Davidge
,
Philos. Mag.
8
,
1369
(
1963
).
28.
R. W.
Davidge
,
J. Phys. Chem. Solids
25
,
907
(
1964
).
29.
G.
Remault
,
J.
Vennik
, and
S.
Amelinckx
,
J. Phys. Chem. Solids
16
,
158
(
1960
).
30.
T.
Yoshi-yama
,
M.
Mannami
, and
K.
Tanaka
,
J. Phys. Soc. Japan
24
,
1019
(
1968
).
31.
E.
Van Dingenen
,
Philos. Mag.
31
,
1263
(
1975
).
32.
R. W.
Whitworth
,
Philos. Mag.
5
,
425
(
1960
).
33.
L. M.
Belyaev
, and
V. V.
Nabatov
, and
Yu. N.
Martyshev
,
Sov. Phys.: Crystalography
7
,
464
(
1962
).
34.
Yu. N.
Martyshev
,
Sov. Phys.: Crystalography
10
,
167
(
1965
).
35.
R. S.
Kil’keev
and
V. S.
Kuksenko
,
Sov. Phys.: Solid State
22
,
1829
(
1980
).
36.
N. G.
Politov
,
M. V.
Galustashvili
, and
I. M.
Paperno
,
Sov. Phys.: Solid State
12
,
2421
(
1970
).
37.
A. A.
Urusovskaya
,
Sov. Phys.: Uspekhi
11
,
631
(
1968
).
38.
M. I.
Kornfel’d
,
Sov. Phys.: Uspekhi
18
,
459
(
1975
).
39.
V. M.
Finkel’
,
Yu. I.
Tyalin
,
Yu. I.
Golovin
,
L. N.
Muratova
, and
M. V.
Gorshenev
,
Sov. Phys.: Solid State
17
,
1116
(
1979
).
40.
V. M.
Finkel’
,
Yu. I.
Golovin
,
V. E.
Sereda
,
G. P.
Kulikova
, and
L. B.
Zuev
,
Sov. Phys.: Solid State
17
,
492
(
1979
).
41.
F.
Fröhlich
, and
D.
Suisky
,
Phys. Status Solidi
4
,
151
(
1964
).
42.
D. B.
Fischbach
, and
A. S.
Nowick
,
Phys. Rev.
99
,
1333
(
1955
).
43.
D. B.
Fischbach
, and
A. S.
Nowick
,
J. Phys. Chem. Solids
5
,
302
(
1958
).
44.
R. W.
Whitworth
,
Philos. Mag.
10
,
801
(
1964
).
45.
P.
Varotsos
, and
K.
Alexopoulos
,
Tectonophysics
110
,
73
(
1984
);
P.
Varotsos
, and
K.
Alexopoulos
Tectonophysics
110
,
99
(
1984
).
46.
P.
Varotsos
,
K.
Alexopoulos
,
K.
Nomikos
, and
M.
Lazaridou
,
Tectonophysics
152
,
193
(
1988
).
47.
P.
Varotsos
,
N.
Sarlis
, and
M.
Lazaridou
,
Phys. Rev. B
59
,
24
(
1999
).
48.
N.
Sarlis
,
M.
Lazaridou
,
P.
Kapiris
, and
P.
Varotsos
,
Geophys. Res. Lett.
26
,
3245
(
1999
).
49.
Yu. I.
Golovin
,
T. P.
D’yachek
,
V. I.
Uskov
, and
A. A.
Shibkov
,
Sov. Phys.: Solid State
27
,
344
(
1985
).
50.
Yu. I.
Golovin
and
A. A.
Shibkov
,
Sov. Phys.: Solid State
28
,
1964
(
1986
).
51.
Yu. I.
Golovin
,
T. P.
D’yachek
,
V. I
Orlov
, and
Yu. I.
Tyalin
,
Sov. Phys.: Solid State
27
,
671
(
1985
).
52.
C.
Mavromatou
and
V.
Hadjicontis
,
Laboratory investigation of the electric signals preceding the fracture of crystalline iinsulators
, in:
Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior
, edited by,
R.
Teisseyre
and
E.
Majewski
(
Academic Press
,
2001
), Chap. 21, p. 501.
53.
D.
Ninos
,
G. S.
Tombras
,
C.
Mavromatou
, and
V.
Hadjicontis
,
IEEE Geoscience and Remote Sensing Lett.
1
,
162
(
2004
).
54.
C.
Mavromatou
,
V.
Hadjicontis
,
D.
Ninos
,
D.
Mastrogiannis
,
E.
Hadjicontis
, and
K.
Eftaxias
,
Phys. Chem. Earth
29
,
353
(
2004
).
55.
V.
Hadjicontis
,
C.
Mavromatou
, and
D.
Ninos
,
Nat. Hazards and Earth System Sci.
4
,
633
(
2004
).
56.
V. M.
Kontorovich
,
Sov. Phys.: Uspekhi
27
,
134
(
1984
).
57.
M. I.
Kaganov
,
V. Ya.
Kravchenko
, and
V. D.
Natsik
,
Sov. Phys.: Uspekhi
16
,
878
(
1974
).
58.
V. I.
Al’shits
,
E. V.
Darinskaya
, and
O. L.
Kazakova
,
Phys. Solid State
40
,
70
(
1998
).
59.
V. I.
Al’shits
,
E. V.
Darinskaya
,
I. V.
Gektina
, and
F. F.
Lavrent’ev
,
Sov. Phys.: Crystallography
35
,
597
(
1990
).
60.
M. I.
Molotskii
,
Sov. Phys.: Solid State
33
,
1760
(
1991
).
61.
K. A.
Chishko
,
Sov. Phys. Acoustics
35
,
310
(
1989
).
62.
O. V.
Charkina
, and
K. A.
Chishko
,
Phys. Solid State
43
,
1898
(
2001
).
63.
Yu. I.
Golovin
and
V. I.
Orlov
,
Sov. Phys.: Solid State
30
,
2489
(
1988
).
64.
V.
Hadjicontis
and
C.
Mavromatou
,
Geophys. Res. Lett.
21
,
1687
(
1994
).
65.
V.
Hadjicontis
,
G. S.
Tombras
,
D.
Ninos
, and
C.
Mavromatou
, Memory Effects in Electromagnetic Emission During Uniaxial Deformation of Dielectric Crystalline Materials, GRSL, 00077–2004.
66.
V.
Hadjicontis
,
C.
Mavromatou
, and
Y.
Enomoto
,
Materials Science Forum
239–241
,
435
(
1997
).
67.
P.
Varotsos
,
N.
Sarlis
, and
M.
Lazaridou
,
Phys. Rev. B
59
,
24
(
1999
).
68.
P.
Varotsos
,
V.
Hadjicontis
, and
A. S.
Nowick
,
Acta Geophys. Pol. XLIX
, 4
415
(
2001
).
69.
P.
Varotsos
,
K.
Eftaxias
,
F.
Vallianatos
, and
M.
Lazaridou
,
Geohys. Res. Lett.
23
,
1295
(
1996
).
70.
K.
Eftaxias
,
P.
Kapiris
,
E.
Dologlou
,
J.
Kopanas
,
N.
Bogris
,
G.
Antonopulos
,
A.
Peratzakis
, and
V.
Hadjicontis
,
Geophys. Res. Lett.
29
,
69
(
2002
).
71.
Y. F.
Contoyiannis
,
P. G.
Kapiris
, and
K.
Eftaxias
,
Phys. Rev. E
71
,
066123
(
2005
).
72.
W. G.
Johnston
,
J. Appl. Phys.
33
,
2716
(
1962
).
73.
B. I.
Smirnov
,
Dislocation Structure and Work Hardening in Crystals
, (
Nauka
Leningrad
,
1981
) [In Russian].
74.
V.
Hadjicontis
, and
V. E.
Panin
,
Y. Y.
Deryugin
,
D.
Ninos
,
C.
Mavromatou
, and
K.
Eftaxias
,
Phys. Mesomech.
7
,
71
(
2004
).
75.
V. E.
Panin
,
Y. Y.
Deryugin
,
V.
Hadjicontis
,
C.
Mavromatou
, and
K.
Eftaxias
,
Phys. Mesomech.
4
,
21
(
2001
).
76.
The quantity σ0 ∼ 6.0 MPa in Refs. 74 and 75 is the absolute value of applied stress which is twice as large as resolved shear stress for the given slip geometry.
77.
K. A.
Chishko
,
Acoust. Phys.
39
,
80
(
1993
).
78.
J. P.
Hirth
and
J.
Lothe
,
Theory of Dislocations
(
McGraw-Hill Co.
,
New York
,
1970
).
79.
We use here the same symbol ρ to denote the three-, two- and one-dimensional distributions, but with different sets of arguments [ρ(r,t), ρ(x,z,t) and ρ(x,t), respectively].
80.
A.
Lidiard
,
Ionic Conductivity
(
Springer-Verlag
,
Berlin
,
1957
).
81.
V. D.
Natsik
and
K. A.
Chishko
,
Sov. Phys.: Solid State
17
,
214
(
1975
).
82.
L. E.
Elsholts
,
Differential Equations
(
Hindustan Pub. Co.
,
Delhi
,
1961
).
83.
W. K. H.
Panofsky
and
M.
Phillips
,
Classical Electricity and Magnetism
(
Addison-Wesley Pub. Co.
,
Massachusetts
,
1959
).
84.
W.
Mason
,
J. Acoust. Soc. Amer.
32
,
458
(
1960
).
85.
P.
Sedlak
,
M.
Enoki
,
T.
Ogasawara
, and
J.
Sikula
, Electromagnetic and Acoustic Emission in PEEK/Carbon Nanotube Composites, in: EWGAE 2010 (Vienna, 8th to 10th September), European Working Group on Acoustic Emission, Vienna (2010).
86.
V. A.
Slusarev
, and
K. A.
Chishko
, “
Electron localized states on edge dislocation in metal
,”
Fizika Metallov i Metallovedenie
58
(
5
),
877
(
1984
).
You do not currently have access to this content.