In this work, Rb2SO4 single crystals of good optical quality were synthesized and the spectral (300–700 nm) and temperature (300–77 K) dependencies of birefringence were experimentally investigated. It was found that with a temperature decreasing, at a temperature of T = 85 K and a light wavelength of λ = 500 nm, the birefringence value in the Y direction is zero (Δny= nznх = 0), which testifies to the existence of a new isotropic point. The influence of uniaxial compression on changes in Δny (Т, λ) was studied, and their significant sensitivity was revealed. The temperature-baric and spectral-baric changes of the isotropic point position were analyzed, based on which the temperature-spectral-baric diagram of the isotropic state of the crystal was constructed, which will be of practical importance for the use of crystal as an active element in a crystal-optical temperature sensor for a low-temperature region. Based on the Δny (Т, λ, σ) dependencies, the combined piezo-optic coefficients of the crystal were estimated, and it was assumed that not only thermal but also mechanical deformation of the optical indicatrix takes place in the vicinity of the isotropic point.

1.
2.
C.
Schwartz
,
D. S.
Chemla
,
B.
Ayrault
, and
R. C.
Smith
,
Opt. Commun.
5
,
244
(
1975
).
3.
G. C.
Bhar
,
J. Phys. D: Appl. Phys.
13
,
455
(
1980
).
4.
S. C.
Abrahams
and
J. L.
Bernstein
,
J. Chem. Phys.
52
,
5607
(
1970
).
5.
S. C.
Abrahams
and
J. L.
Bernstein
,
J. Chem. Phys.
59
,
1625
(
1973
).
6.
M. O.
Romanyuk
,
Krystalooptyka
(LNU im. I. Franka,
Lviv
,
2017
).
7.
M. O.
Romanyuk
,
A. S.
Krochuk
, and
I. P.
Pashuk
,
Optyka
(LNU im. I. Franka,
Lviv
,
2012
).
8.
V. M.
Haba
,
Spektral’no-temperaturni Deformatsiyi Optychnykh Indykatrys v Ionnykh Krystalakh ta Yikh Praktychnoho Zastosuvannya
(
Liha-Pres
,
Lviv
,
2006
).
9.
L. M.
Suslikov
,
V. Yu.
.
Slivka
, and
M. P.
Lisitsa
,
Tverdotel’nyye Opticheskiye Fil’try na Girotropnykh Kristallakh
(
Interpres LTD
,
Kyiv
,
1998
).
10.
O. S.
Kushnir
and
P. A.
Shchepanskyi
,
V. Y.
Stadnyk
, and
A. O.
Fedorchuk
,
Opt. Mater.
95
,
109221
(
2019
).
11.
V. Y.
Stadnyk
,
R. S.
Brezvin
,
M. Y.
Rudysh
, and
P. A.
Shchepanskyi
,
Opt. Spectrosc.
117
,
756
(
2014
).
12.
V. Y.
Stadnyk
,
M. O.
Romanyuk
, and
R. S.
Brezvin
,
Ferroelectrics
192
,
203
(
1997
).
13.
P. E.
Tomaszewski
,
Phase Transit.
38
,
127
(
1992
).
14.
O.
Muller
and
R.
Roy
,
The Major Ternary Structural Families
(
Springer-Verlag, Berlin
,
Heidelberg, New York
,
1974
).
15.
L.
Vinchel
and
G.
Vinchel
,
Optical Properties of Synthetic Minerals
(
Mir
,
Moscow
,
1967
).
16.
M. Ya.
Rudysh
,
I. A.
Pryshko
, and
P. A.
Shchepanskyi
,
V. Y.
Stadnyk
,
R. S.
Brezvin
, and
Z. O.
Kogut
,
Optik
269
,
169875
(
2022
).
17.
M. O.
Romanyuk
,
Praktykum z Krystalooptyky i Krystalofizyky
(LNU im. I. Franka,
Lviv
,
2012
).
18.
B.
Andriyevsky
,
W.
Ciepluch-Trojanek
,
V.
Stadnyk
,
M.
Tuzyak
,
M.
Romanyuk
, and
V.
Kurlyak
,
J. Phys. Chem. Solids
68
,
1892
(
2007
).
19.
V. Y.
Stadnyk
,
V. M.
Gaba
,
B. V.
Andrievskii
, and
Z. O.
Kogut
,
Phys. Solid State
53
,
131
(
2011
).
20.
P. A.
Shchepanskyi
and
O. S.
Kushnir
,
V. Yu.
Stadnyk
,
A. O.
Fedorchuk
,
M. Ya.
Rudysh
,
R. S.
Brezvin
,
P. Y.
Demchenko
, and
A. S.
Krymus
,
Ukr. J. Phys. Opt.
18
,
187
(
2017
).
22.
H.
Horinaka
,
K.
Tomii
,
H.
Sonomura
, and
T.
Miyauchi
,
Jpn. J. Appl. Phys.
24
,
755
(
1985
).
23.
H.
Horinaka
,
N.
Yamamoto
, and
H.
Hamaguchi
,
Appl. Spectrosc.
46
,
379
(
1992
).
24.
M.
Susaki
,
N.
Yamomoto
, and
H.
Horinaka
,
Jpn. J. Appl. Phys.
33
,
1561
(
1994
).
25.
H.
Horinaka
,
H.
Sonomura
, and
T.
Miyauchi
,
Jpn. J. Appl. Phys.
24
,
463
(
1985
).
26.
T.
Yamomoto
,
H.
Takehara
,
H.
Horinaka
, and
T.
Miyauchi
,
Jpn. J. Appl. Phys.
25
,
1397
(
1985
).
27.
H.
Horinaka
,
T.
Okudo
, and
N.
Yamomoto
,
Jpn. J. Appl. Phys.
28
,
1328
(
1989
).
28.
N.
Syrbu
,
A.
Dorogan
,
V.
Ursaki
,
I.
Stamov
, and
I. M.
Tiginyanu
,
Opt. Commun.
284
,
3552
(
2011
).
You do not currently have access to this content.