We consider two examples of real physical systems approximately described using fractional nonadditive Polychronakos statistics. The values of two statistics parameters are linked to properties of modeled systems using virial expansion. For a two-dimensional Fermi gas with contact interactions, accuracy up to the third virial coefficient is achieved. An approach to model the second virial coefficient of non-Abelian soft-core anyons is analyzed in detail.
REFERENCES
1.
G.
Moore
and N.
Read
, “Nonabelions in the fractional quantum Hall effect
,” Nucl. Phys. B
360
, 362
(1991
). 2.
A.
Stern
, “Anyons and the quantum Hall effect: A pedagogical review
,” Ann. Phys.
323
, 204
(2008
). 3.
D. J.
Clarke
, J.
Alicea
, and K.
Shtengel
, “Exotic non-Abelian anyons from conventional fractional quantum Hall states
,” Nat. Commun.
4
, 1348 (2013
). 4.
E.
Shech
, “Two approaches to fractional statistics in the quantum Hall effect: Idealizations and the curious case of the anyon
,” Found. Phys.
45
, 1063
(2015
). 5.
J.
Nakamura
, S.
Liang
, G. C.
Gardner
, and M. J.
Manfra
, “Direct observation of anyonic braiding statistics
,” Nat. Phys.
16
, 931
(2020
). 6.
S.
Manna
, B.
Pal
, W.
Wang
, and A. E. B.
Nielsen
, “Anyons and fractional quantum Hall effect in fractal dimensions
,” Phys. Rev. Res.
2
, 023401
(2020
). 7.
H. Q.
Trung
and B.
Yang
, “Fractionalization and dynamics of anyons and their experimental signatures in the ν = n + 1/3 fractional quantum Hall state
,” Phys. Rev. Lett.
127
, 046402
(2021
). 8.
B. I.
Halperin
and J. K.
Jain
, Fractional Quantum Hall Effects
(World Scientific
, 2020
). 9.
R. B.
Laughlin
, “The relationship between high temperature superconductivity and the fractional quantum Hall effect
,” Science
242
, 525
(1988
). 10.
G. S.
Canright
and M. D.
Johnson
, “Fractional statistics, alpha to beta
,” J. Phys. A, Math. Gen.
27
, 3579
(1994
). 11.
C.
Vitoriano
and M. D.
Coutinho-Filho
, “Fractional statistics and quantum scaling properties of the integrable Penson-Kolb-Hubbard chain
,” Phys. Rev. B
82
, 125126
(2010
). 12.
D.-H.
Lee
and S. A.
Kivelson
, “Two classes of Mott insulator
,” Phys. Rev. B
67
, 024506
(2003
). 13.
M.
Gulacsi
, “Holon statistics,” Physica B
536
, 777
(2018
). 14.
O.
Hart
, Y.
Wan
, and C.
Castelnovo
, “Correlation holes and slow dynamics induced by fractional statistics in gapped quantum spin liquids
,” Nat. Commun.
12
, 1459 (2021
). 15.
M. P. A.
Fisher
, G.
Grinstein
, and S. M.
Girvin
, “Presence of quantum diffusion in two dimensions, universal resistance at the superconductor-insulator transition
,” Phys. Rev. Lett.
64
, 587
(1990
). 16.
H.-D.
Doebner
, “On a general nonlinear Schrödinger equation admitting diffusion currents
,” Phys. Lett. A
162
, 397
(1992
). 17.
O.
Hart
, Y.
Wan
, and C.
Castelnovo
, “Coherent propagation of quasiparticles in topological spin liquids at finite temperature
,” Phys. Rev. B
101
, 064428
(2020
). 18.
C.
Itoi
, “Smooth paths on three-dimensional lattice
,” Phys. Rev. Lett.
73
, 3335
(1994
). 19.
L.
Arkeryd
, “On low temperature kinetic theory; spin diffusion, Bose–Einstein condensates, anyons
,” J. Stat. Phys.
150
, 1063
(2013
). 20.
C. S.
Srivatsan
, M. V. N.
Murthy
, and R. K.
Bhaduri
, “Gentile statistics and restricted partitions
,” Pramana – J. Phys.
66
, 485
(2006
). 21.
A.
Rovenchak
, “The relation between fractional statistics and finite bosonic systems in one-dimensional case
,” Fiz. Nizk. Temp.
35
, 510
(2009
). [Low Temp. Phys.
35, 400 (2009)].22.
W.
Jian-Hui
and M.
Yong-Li
, “Thermodynamic properties of a finite Bose gas in a harmonic trap
,” Chin. Phys. B
19
, 050502
(2010
). 23.
A. M.
Gavrilik
and Yu. A.
Mishchenko
, “Deformed Bose-gas models aimed at taking into account both compositeness of particles and their interaction
,” Ukr. J. Phys.
58
, 1171
(2013
). 24.
C.
Vitoriano
, R. R.
Montenegro-Filho
, and M. D.
Coutinho-Filho
, “Fractional exclusion statistics and thermodynamics of the Hubbard chain in the spin-incoherent luttinger liquid regime
,” Phys. Rev. B
98
, 085130
(2018
). 25.
A. M.
Gavrilik
and Yu. A.
Mishchenko
, “Composite fermions as deformed oscillators, wavefunctions and entanglement
,” Ukr. J. Phys.
64
, 1134
(2019
). 26.
W. S.
Chung
and A.
Algin
, “Modified multidimensional q-deformed Newton oscillators, algebra, interpolating statistics and thermodynamics
,” Ann. Phys.
409
, 167911
(2019
). 27.
H.
Mehri-Dehnavi
and H.
Mohammadzadeh
, “Thermodynamic geometry of Kaniadakis statistics
,” J. Phys. A Math. Theor.
53
, 375009
(2020
). 28.
C.
Chafin
and T.
Schäfer
, “Scale breaking and fluid dynamics in a dilute two-dimensional Fermi gas
,” Phys. Rev. A
88
, 043636
(2013
). 29.
W.
Daza
, J. E.
Drut
, C.
Lin
, and C.
Ordónẽz
, “Virial expansion for the Tan contact and Beth–Uhlenbeck formula from two-dimensional SO(2,1) anomalies
,” Phys. Rev. A
97
, 033630
(2018
). 30.
M.
Dolev
, M.
Heiblum
, V.
Umansky
, A.
Stern
, and D.
Mahalu
, “Observation of a quarter of an electron charge at the ν = 5/2 quantum Hall state
,” Nature
452
, 829
(2008
). 31.
J.
Park
, C.
Spånslätt
, Y.
Gefen
, and A. D.
Mirlin
, Noise on the non-Abelian ν = 5/2 fractional quantum Hall edge
, Phys. Rev. Lett.
125
, 157702
(2020
). 32.
W. S.
Chung
and H.
Hassanabadi
, “Polychronakos statistics and α-deformed bose condensation of α-bosons
,” Mod. Phys. Lett. B
32
, 1850052
(2018
). 33.
K.
Ourabah
, “On the effect of fractional statistics on quantum ion acoustic waves
,” Phys. Lett. A
383
, 345
(2019
). 34.
M.
Hoyuelos
, “From creation and annihilation operators to statistics
,” Physica A
490
, 944
(2018
). 35.
H. K.
Onnes
, “Expression of the equation of state of gases and liquids by means of series
,” Proc. Sect. Sci. K. Akad. Wet. Amst.
4
, 125
(1902
).36.
P. F.
Borges
, H.
Boschi-Filho
, and C.
Farina
, “Generalized partition functions, interpolating statistics and higher virial coefficients
,” Mod. Phys. Lett. A
14
, 1217
(1999
). 37.
A.
Khare
, Fractional Statistics and Quantum Theory
, 2nd ed, (World Scientific
, Singapore
, 2005
).38.
X.-J.
Liu
, H.
Hu
, and P. D.
Drummond
, “Virial expansion for a strongly correlated Fermi gas
,” Phys. Rev. Lett.
102
, 160401
(2009
). 39.
C. R.
Shill
and J. E.
Drut
, “Virial coefficients of one-dimensional and two-dimensional Fermi gases by stochastic methods and a semiclassical lattice approximation
,” Phys. Rev. A
98
, 053615
(2018
). 40.
To be precise, this relation corresponds to spinless particles. However, taking into consideration additional degeneracy 2s+1 due to spin s does not change final results as such factors cancel during derivations.
41.
A.
Rovenchak
, “Two-parametric fractional statistics models for anyons
,” Eur. Phys. J. B
87
, 175
(2014
). 42.
O. M.
Chubai
and A. A.
Rovenchak
, “Ideal Bose gas in some deformed types of thermodynamics. Correspondence between deformation parameters
,” Ukr. J. Phys.
65
, 500
(2020
). 43.
C.
Tsallis
, “What are the numbers that experiments provide?
,” Química Nova
17
, 468
(1994
).44.
L.
Salasnich
, “BEC in nonextensive statistical mechanics
,” Intern. J. Modern Phys. B
14
, 405
(2000
).45.
A.
Rovenchak
, “Ideal Bose gas in nonadditive statistics
,” Fiz. Nizk. Temp.
44
, 1308
(2018
). [Low Temp. Phys.
44, 1025 (2018)].46.
X.-J.
Liu
, “Virial expansion for a strongly correlated Fermi system and its application to ultracold atomic Fermi gases
,” Phys. Rep.
524
, 37
(2013
). 47.
V.
Ngampruetikorn
, J.
Levinsen
, and M. M.
Parish
, “Pair correlations in the two-dimensional Fermi gas
,” Phys. Rev. Lett.
111
, 265301
(2013
). 48.
J. M.
Leinaas
and J.
Myrheim
, “On the theory of identical particles
,” Nuovo Cim.
37B
, 1
(1977
). 49.
F.
Wilczek
, “Quantum mechanics of fractional-spin particles
,” Phys.: Rev. Lett.
49
, 957
(1982
). 50.
F.
Mancarella
, A.
Trombettoni
, and G.
Mussardo
, “Statistical mechanics of an ideal gas of non-Abelian anyons
,” Nucl. Phys. B
867
[FS], 950
(2013
). 51.
D.
Lundholm
and V.
Qvarfordt
, “Exchange and exclusion in the non-Abelian anyon gas (2020),” arXiv:2009.12709.52.
B. Yu.
Sobko
, “Relationship between the parameters of the second virial coefficient of non-Abelian anyons and the two-parametric fractional statistics
,” Ukr. J. Phys.
66
, 595
(2021
). 53.
Y.
Hou
and J. E.
Drut
, “Virial expansion of attractively interacting Fermi gases in one, two, and three dimensions, up to fifth order
,” Phys. Rev. A
102
, 033319
(2020
). © 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.