The magnetoresistance of multi-walled carbon nanotubes is studied in the temperature range 4.2–200 K and magnetic fields up to 9 T. The magnetoresistance is negative in the whole temperature range. For small magnetic fields and low temperatures, the dependence of the relative conductivity on the magnetic field is quadratic. However, as the magnetic field increases, it becomes logarithmic, which may be described by weak localization and charge carriers’ interaction models. We show that the addition to conductivity due to the charge carriers’ weak localization significantly exceeds the addition due to the effect of the charge carriers’ interaction. The Fermi energy and the charge carriers’ interaction constant were estimated in terms of these models using the experimental data on the magnetoresistance field and temperature dependences. Also, we determined the exact form for the temperature dependence of the phase relaxation time of the charge carriers’ wave function.

1.
M.
Bockrath
,
D. H.
Cobden
,
J.
Lu
,
A. G.
Rinzler
,
R. E.
Smalley
,
L.
Balents
, and
P. L.
McEuen
, “
Luttinger-liquid behavior in carbon nanotubes
,”
Nature
397
,
598
(
1999
).
2.
R.
Falconia
,
J. A.
Azamar
, and
R.
Escudero
, “
Electronic behavior in mats of single-walled carbon nanotubes under pressure
,”
Solid State Commun.
129
,
569
(
2004
).
3.
D. J.
Bae
,
K. S.
Kim
,
Y. S.
Park
,
E. K.
Suh
,
K. H.
An
,
J.-M.
Moon
,
S. C.
Lim
,
S. H.
Park
,
Y. H.
Jeong
, and
Y. H.
Lee
, “
Transport phenomena in anisotropically aligned single-wall carbon nanotube film
,”
Phys. Rev. B
64
,
233401
(
2001
).
4.
M.
Shiraishi
and
M.
Ata
, “
Conduction mechanisms in single-walled carbon nanotubes
,”
Synthetic Metals
128
,
235
(
2002
).
5.
B.
Liu
,
B.
Sundqvist
,
O.
Andersson
,
T.
Wagberg
,
E. B.
Nyeanchia
,
X.-M.
Zhu
, and
G.
Zou
, “
Electric resistance of single-walled carbon nanotubes under hydrostatic pressure
,”
Solid State Commun.
118
,
31
(
2001
).
6.
I. V.
Ovsiyenko
and
T. A.
Len
,
L. Yu.
Matzui
,
Yu. I.
Prylutskyy
,
U.
Ritter
,
P.
Scharff
,
F.
Le Normand
, and
P.
Eklund
,
Resistance of nanocarbon material containing nanotubes
,”
Mol. Cryst. Liquid Cryst.
468
,
289
(
2007
).
7.
E. S.
Choi
,
J. S.
Brooks
,
D. L.
Eaton
,
M. S.
Al-Haik
,
M. Y.
Hussaini
,
H.
Garmestani
,
D.
Li
, and
K.
Dahmen
, “
Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing
,”
J. Appl. Phys.
94
,
6034
(
2003
).
8.
P. R.
Wallace
, “
The band theory of graphite
,”
Phys. Rev. B
71
,
622
(
1947
).
9.
S.
Ahn
,
Y.
Kim
,
Y.
Nam
,
H.
Yoo
,
J.
Park
,
Y.
Park
,
Z.
Wang
,
Z.
Shi
, and
Z.
Jin
, “
Magnetotransport in iodine-doped single-walled carbon nanotubes
,”
Phys. Rev. B
80
,
1654261
(
2009
).
10.
O.
Chauvet
,
J. M.
Benoit
,
B.
Corraze
, and
O.
Chauvet
,
“Electrical, magneto-transport and localization of charge carries in nanocomposities based on carbon nanotubes,
Carbon
42
,
949
(
2004
).
11.
S. N.
Song
,
X. K.
Wang
,
R. P. H.
Chang
, and
J. B.
Ketterson
, “
Electronic properties of graphite nanotubules from galvano-magnetic effects
,”
Phys. Rev. Lett.
72
,
697
(
1994
).
12.
A. G.
Kudashev
,
A. V.
Okotrub
,
N. F.
Yudanov
,
A. I.
Romanenko
,
L. G.
Bulusheva
,
A. G.
Abrosimov
,
A. L.
Chuvilin
,
Y. M.
Pazhetov
, and
A. I.
Boronin
, “
Gas phase synthesis of nitrogen-containing carbon nanotubes and their electronic properties
,”
Phys. Solid State (FTT)
44
,
626
(
2002
) [in Russian].
13.
L.
Langer
,
V.
Bayot
,
E.
Grivei
,
J.-P.
Issi
,
J. P.
Heremans
,
C. H.
Olk
,
L.
Stockman
,
C.
Van Haesendonck
, and
Y.
Bruynseraede
, “
Quantum transport in a multi-walled carbon nanotube
,”
Phys. Rev. Lett.
76
,
479
(
1996
).
14.
L. P.
Gor’kov
,
A. I.
Larkin
, and D. Ye.
Khmel’nitzkii
, “Conductivity of particle in a two-dimensional random potential
,”
Pis’ma Zh. Eksp. Teor. Fiz.
30
,
248
(
1980
).
15.
A. I.
Larkin
, “
Magnetoresistance of two-dimensional systems
,”
Pis’ma Zh. Eksp. Teor. Fiz.
31
,
239
(
1980
).
16.
B. I.
Belevtsev
,
Y. F.
Komnik
, and
E. Yu.
Beliayev
, “Electron relaxation in disordered gold films
,”
Phys. Rev. B
58
,
8079
(
1998
).
17.
B. L.
Altshuler
, “
On the temperature dependence of the impurity conductivity of metals at low temperatures
,”
Sov. Phys. JETP
75
,
1330
(
1978
).
18.
B. L.
Altshuler
,
D.
Khmel’nitzkii
,
A. I.
Larkin
, and
P. A.
Lee
, “
Magnetoresistance and Hall effect in disordered two-dimensional electron gas
,”
Phys. Rev. B
22
,
5142
(
1980
).
19.
L.
Piraux
,
V.
Bayot
,
J. P.
Michenaud
, and
J. P.
Issi
, “
Weak localization and Coulomb interaction in graphite acceptor intercalation compounds
,”
Physica Scripta
37
,
942
(
1988
).
20.
I. V.
Ovsienko
,
T. A.
Len
,
L. Y.
Matsuy
,
Y. I.
Prylutskyy
,
I. B.
Berkutov
,
V. V.
Andrievskii
,
Y. F.
Komnik
,
I. G.
Mirzoiev
,
G. E.
Grechnev
,
Y. A.
Kolesnichenko
,
R.
Hayn
, and
P.
Scharff
, “
Magnetoresistance and electrical resistivity of N-doped multi-walled carbon nanotubes at low temperatures
,”
Phys. Status Solidi B
252
(
6
),
1402
(
2015
).
21.
B. I.
Belevtsev
,
Y. F.
Komnik
, and
E. Yu.
Belyaev
, “Electron phase relaxation in disordered gold films irradiated with Ar ions,”
Fiz. Nizk. Temp.
21
,
839
(
1995
) [Low Temp. Phys. 21, 646 (1995)].
22.
B. L.
Altshuler
,
A. G.
Aronov
,
M. E.
Gershenson
, and
Yu. V.
Sharvin
,
“Quantum effects in disordered metal films
,”
Sov. Sci. Rev.
9
,
223
, Schur, Switzerland, Harwood Academic Publisher Gmbh (
1987
).
23.
I.
Ovsiienko
,
T.
Len
,
L.
Matzui
,
V.
Tkachuk
,
I.
Berkutov
,
I.
Mirzoiev
,
Y.
Prylutskyy
,
N.
Tsierkezos
, and
U.
Ritter
,
Materialwissenschaft und Werkstofftechnik
47
,
254
(
2016
).
You do not currently have access to this content.