Superconducting microcircuits and metamaterials are promising candidates for use in new generation cryogenic electronics. Their functionality is largely justified by the macroscopic distribution of electromagnetic fields in arranged unit cells, rather than by the microscopic properties of composite materials. We present a new method for visualizing the spatial structure of penetrating microwaves with microscopic resolution in planar superconducting macroscopic resonators as the most important circuit-forming elements of modern microelectronics. This method uses a low-temperature laser scanning microscope that examines the phase (i.e., direction) and amplitude of local radio-frequency currents versus the two-dimensional coordinates of the superconducting resonant structure under test. Phase-sensitive contrast is achieved by synchronizing the intensity-modulated laser radiation with the resonant harmonics of the microwave signal passing through the sample. In this case, the laser-beam-induced loss in the illuminated area will strongly depend on the local phase difference between the RF carrier signal and the spatially temporal structure of the focused laser oscillation. This approach eliminates the hardware limitations of the existing technique of radio-frequency microscopy and brings the phase-sensitive demodulation mode to the level necessary for studying the physics of superconducting metamaterials. The advantage of the presented method over the previous method of RF laser scanning micros-copy is demonstrated by the example of the formation of standing waves in a spiral superconducting Archimedean resonator up to the 38th eigenmode resonance.

1.
N. S.
Kumar
,
K. C. B.
Naidu
,
P.
Banerjee
,
T. A.
Babu
, and
B. V. S.
Reddy
,
Crystals
11
,
518
(
2021
).
2.
P.
Kumar
,
T.
Ali
, and
M. M. M.
Pai
,
IEEE Access
9
,
18722
(
2021
).
3.
A.
Salim
and
S.
Lim
,
Sensors
18
,
232
(
2018
).
4.
R.
Grimberg
,
Mater. Sci. Eng. B
178
,
1285
(
2013
).
6.
G. V.
Eleftheriades
,
IEEE Antennas and Propagation Magazine
49
,
34
(
2007
).
7.
N.
Lazarides
and
G. P.
Tsironis
,
Phys. Rep.
752
,
1
(
2018
).
8.
X.
Zhao
,
G.
Duan
,
A.
Li
,
C.
Chen
, and
X.
Zhang
,
Microsyst. Nanoeng.
5
,
5
(
2019
).
9.
D. R.
Smith
,
J. B.
Pendry
, and
M. C. K.
Wiltshire
,
Science
305
,
788
(
2004
).
10.
W.
Zhou
,
Z.
Zhu
, and
R.
Bai
,
Optik
7
,
1
(
2021
).
11.
C.
Kurter
,
P.
Tassin
,
A. P.
Zhuravel
,
L.
Zhang
,
T.
Koschny
,
A. V.
Ustinov
,
C. M.
Soukoulis
, and
S. M.
Anlage
,
Appl. Phys. Lett.
100
,
121906
(
2012
).
12.
H.
Wang
,
A.
Zhuravel
,
S.
Indrajeet
,
B.
Taketani
,
M.
Hutchings
,
Y.
Hao
,
F.
Rouxinol
,
F.
Wilhelm
,
M.
LaHaye
,
A.
Ustinov
, and
B.
Plourde
,
Phys. Rev. Appl.
11
,
054062
(
2019
).
13.
Z.
Vafapour
and
H.
Alaei
,
Plasmonics
12
,
1343
(
2017
).
14.
A. P.
Zhuravel
,
C.
Kurter
,
A. V.
Ustinov
, and
S. M.
Anlage
,
Phys. Rev. B
85
,
134535
(
2012
).
15.
W.-C.
Chen
,
C. M.
Bingham
,
K. M.
Mak
,
N. W.
Caira
, and
W. J.
Padilla
,
Phys. Rev. B
85
,
201104(R)
(
2012
).
16.
J.
Fang
,
M. S.
Chow
,
K. C.
Chan
,
K. K.
Wong
,
G. X.
Shen
,
E.
Gao
,
E. S.
Yang
, and
Q. Y.
Ma
,
IEEE Transact. Appl. Supercond.
12
,
1823
(
2002
).
17.
B. G.
Ghamsari
,
J.
Abrahams
,
C.
Kurter
, and
S. M.
Anlage
,
Appl. Phys. Lett.
102
,
013503
(
2013
).
18.
C.
Kurter
,
J.
Abrahams
, and
S. M.
Anlage
,
Appl. Phys. Lett.
96
,
253504
(
2010
).
19.
N.
Maleeva
,
A.
Averkin
,
N. N.
Abramov
,
M. V.
Fistul
,
A.
Karpov
,
A. P.
Zhuravel
, and
A. V.
Ustinov
,
J. Appl. Phys.
118
,
033902
(
2015
).
20.
A. P.
Zhuravel
,
B. G.
Ghamsari
,
C.
Kurter
,
P.
Jung
,
S.
Remillard
,
J.
Abrahams
,
A. V.
Lukashenko
,
A. V.
Ustinov
, and
S. M.
Anlage
,
Phys. Rev. Lett.
110
,
087002
(
2013
).
21.
N.
Maleeva
,
M. V.
Fistul
,
A.
Karpov
,
A. P.
Zhuravel
,
A.
Averkin
,
P.
Jung
, and
A. V.
Ustinov
,
J. Appl. Phys.
115
,
064910
(
2014
).
22.
A. P.
Zhuravel
,
S.
Bae
,
S. N.
Shevchenko
,
A. N.
Omelyanchouk
,
A. V.
Lukashenko
,
A. V.
Ustinov
, and
S. M.
Anlage
,
Phys. Rev. B
97
,
054504
(
2018
).
23.
A. P.
Zhuravel
,
C.
Kurter
,
A. V.
Ustinov
, and
S. M.
Anlage
,
Phys. Rev. B
85
,
134535
(
2011
).
24.
J. C.
Culbertson
,
H. S.
Newman
, and
C.
Wilker
,
J. Appl. Phys.
84
,
2768
(
1998
).
25.
S.
Bae
,
Y.
Tan
,
A. P.
Zhuravel
,
L.
Zhang
,
S.
Zeng
,
Y.
Liu
,
T. A.
Lograsso
,
A. T.
Venkatesan
, and
S. M.
Anlage
,
Rev. Sci. Instrum.
90
,
043901
(
2019
).
26.
A. P.
Zhuravel
,
A. G.
Sivakov
,
O. G.
Turutanov
,
A. N.
Omelyanchouk
,
S. M.
Anlage
,
A.
Lukashenko
,
A. V.
Ustinov
, and
D.
Abraimov
,
Fiz. Nizk. Temp.
32
,
775
(
2006
) [Low Temp. Phys. 32, 592 (2006)].
27.
A. P.
Zhuravel
,
S. M.
Anlage
, and
A. V.
Ustinov
,
J. Supercond. Nov. Magn.
19
,
625
(
2006
).
28.
A.
Karpov
,
A. P.
Zhuravel
,
A. S.
Averkin
,
V. I.
Chichkov
, and
A. V.
Ustinov
,
Appl. Phys. Lett.
114
,
232601
(
2019
).
29.
T.
Kaiser
,
M. A.
Hein
,
G.
Müller
, and
M.
Perpeet
,
Appl. Phys. Lett.
73
,
3447
(
1998
).
30.
A. P.
Zhuravel
,
A. V.
Ustinov
,
K. S.
Harshavardhan
,
S. K.
Remillard
, and
See M.
Anlage
,
Mat. Res. Soc. Symp. Proc.
, EXS-3 (
2004
), edited by
V.
Matias
,
X.
Xi
,
J.
Talvacchio
,
Z.
Han
, and
H.-W.
Neumuller
, EE9.7.1 (2003).
31.
A. P.
Zhuravel
,
S. K.
Remillard
,
See M.
Anlage
, and
A. V.
Ustinov
,
MSMW’04 Symposium Proceedings
, Kharkov, Ukraine, June 21–26, Vol. 1, 421 (2004).
32.
J. C.
Booth
,
L. R.
Vale
,
R. H.
Ono
, and
J. H.
Claassen
,
J. Supercond.
14
,
65
(
2001
).
33.
A. P.
Zhuravel
,
S. M.
Anlage
, and
A. V.
Ustinov
,
IEEE Trans. Appl. Supercond.
17
,
902
(
2007
).
34.
C.
Kurter
,
A. P.
Zhuravel
,
J.
Abrahams
,
C. L.
Bennett
,
A. V.
Ustinov
, and
S. M.
Anlage
,
IEEE Trans. Appl. Supercond.
21
,
709
(
2011
).
35.
A. P.
Zhuravel
,
S. M.
Anlage
, and
A. V.
Ustinov
,
Appl. Phys. Lett.
88
,
212503
(
2006
).
36.
C.
Kurter
,
A. P.
Zhuravel
,
A. V.
Ustinov
, and
S. M.
Anlage
,
Phys. Rev. B
84
,
104515
(
2011
).
37.
A. S.
Averkin
,
A. P.
Zhuravel
,
A.
Karpov
,
S. M.
Anlage
, and
A. V.
Ustinov
,
7th international congress on advanced electromagnetic materials in microwaves and optics
(
2013
), p.
142
.
38.
A. P.
Zhuravel
,
S. M.
Anlage
, and
A. V.
Ustinov
, “
Proceedings of the seventh international symposium on physics and engineering of microwaves
,”
Millimeter and Submillimeter Waves IEEE
1
,
166
(
2010
).
You do not currently have access to this content.