The magnetic properties of thin-film multilayers [Fe/Py]/FeMn/Py are investigated as a function of temperature and thickness of the antiferromagnetic FeMn spacer using SQUID magnetometry. The observed behavior differs substantially for the structures with 6 nm and 15 nm FeMn spacers. While the 15 nm FeMn structure exhibits exchange pinning of both ferromagnetic layers in the entire measurement temperature interval from 5 to 300 K, the 6 nm FeMn structure becomes exchange de-pinned in the vicinity of room temperature. The depinned state is characterized by a single hysteresis loop centered at zero field and having enhanced magnetic coercivity. The observed properties are explained in terms of finite-size effects and possible ferromagnetic interlayer coupling through the thin antiferromagnetic spacer.

1.
W. H.
Meiklejohn
,
J. Appl. Phys.
33
,
1328
(
1962
).
2.
J.
Nogués
and
I. K.
Schuller
,
J. Magn. Magn. Mater.
192
,
203
(
1999
).
3.
K.
O’Grady
,
L. E.
Fernandez-Outon
, and
G.
Vallejo-Fernandez
,
J. Magn. Magn. Mater.
322
,
883
(
2010
).
4.
S.
Parkin
,
X.
Jiang
,
C.
Kaiser
,
A.
Panchula
,
K.
Roche
, and
M.
Samant
,
Proc. IEEE
91
,
661
(
2003
).
5.
S. D.
Bader
and
S. S. P.
Parkin
,
Annu. Rev. Condens. Matter Phys.
7
,
71
(
2010
).
6.
P.
Miltényi
,
M.
Gierlings
,
J.
Keller
,
B.
Beschoten
,
G.
Güntherodt
,
U.
Nowak
, and
K. D.
Usadel
,
Phys. Rev. Lett.
84
,
4224
(
2000
).
7.
G.
Malinowski
,
M.
Hehn
,
S.
Robert
,
O.
Lenoble
,
A.
Schuhl
, and
P.
Panissod
,
Phys. Rev. B
68
,
184404
(
2003
).
8.
J. D.
Dutson
,
C.
Huerrich
,
G.
Vallejo-Fernandez
,
L. E.
Fernandez-Outon
,
G.
Yi
,
S.
Mao
,
R. W.
Chantrell
, and
K.
O’Grady
,
J. Phys. Appl. Phys.
40
,
1293
(
2007
).
9.
X. Z.
Zhan
,
G.
Li
,
J. W.
Cai
,
T.
Zhu
,
J. F. K.
Cooper
,
C. J.
Kinane
, and
S.
Langridge
,
Sci. Rep.
9
,
6708
(
2019
).
10.
M. L.
Pankratova
and
A. S.
Kovalev
,
Fiz. Nizk. Temp.
41
,
1069
(
2015
) [
Low Temp. Phys.
41, 838 (2015)].
11.
W. H.
Meiklejohn
and
C. P.
Bean
,
Phys. Rev.
102
,
1413
(
1956
).
12.
R.
Morales
,
Z. P.
Li
,
J.
Olamit
,
K.
Liu
,
J. M.
Alameda
, and
I. K.
Schuller
,
Phys. Rev. Lett.
102
,
097201
(
2009
).
13.
A. V.
Svalov
,
G. V.
Kurlyandskaya
,
V. N.
Lepalovskij
,
P. A.
Savin
, and
V. O.
Vas’kovskiy
,
Superlattice. Microst.
83
,
216
(
2015
).
14.
X. Z.
Zhan
,
G.
Li
,
J. W.
Cai
,
T.
Zhu
,
J. F. K.
Cooper
,
C. J.
Kinane
, and
S.
Langridge
,
Sci. Rep.
9
,
6708
(
2019
).
15.
P. D.
Kulkarnia
,
P. V.
Sreevidya
,
J.
Khan
,
P.
Predeep
,
H. C.
Barshilia
, and
P.
Chowdhury
,
J. Magn. Magn. Mater.
472
,
111
(
2019
).
16.
D.
Mauri
,
H. C.
Siegmann
,
P. S.
Bagus
, and
E.
Kay
,
J. Appl. Phys.
62
,
3047
(
1987
).
17.
M. D.
Stiles
and
R. D.
McMichael
,
Phys. Rev. B
59
,
3722
(
1999
).
18.
A. F.
Kravets
,
O. V.
Gomonay
,
D. M.
Polishchuk
,
Y. O.
Tykhonenko-Polishchuk
,
T. I.
Polek
,
A. I.
Tovstolytkin
, and
V.
Korenivski
,
AIP Adv.
7
,
056312
(
2017
).
19.
Y.
Xu
,
Q.
Ma
,
J. W.
Cai
, and
L.
Sun
,
Phys. Rev. B
,
84
,
054453
(
2011
).
20.
F. Y.
Yang
and
C. L.
Chien
,
Phys. Rev. Lett.
85
,
2597
(
2000
).
21.
C. W.
Leung
and
M. G.
Blamire
,
J. Appl. Phys.
94
,
7373
(
2003
).
22.
C. W.
Leung
and
M. G.
Blamire
,
Phys. Rev. B
72
,
054429
(
2005
).
23.
D. N. H.
Nam
,
W.
Chen
,
K. G.
West
,
D. M.
Kirkwood
,
J.
Lu
, and
S. A.
Wolf
,
Appl. Phys. Lett.
93
,
152504
(
2008
).
24.
M. Y.
Khan
,
C.-B.
Wu
, and
W.
Kuch
,
Phys. Rev. B
89
,
094427
(
2014
).
25.
K.
Nishioka
,
J. Appl. Phys.
80
,
4528
(
1996
).
26.
K.-Y.
Kim
,
H.-C.
Choi
,
S.-Y.
Jo
, and
C.-Y.
You
,
J. Appl. Phys.
114
,
073908
(
2013
).
27.
W. J.
Antel
,
F.
Perjeru
, and
G. R.
Harp
,
Phys. Rev. Lett.
83
,
1439
(
1999
).
28.
K.
Lenz
,
S.
Zander
, and
W.
Kuch
,
Phys. Rev. Lett.
98
,
237201
(
2007
).
29.
P.
Merodio
,
A.
Ghosh
,
C.
Lemonias
,
E.
Gautier
,
U.
Ebels
,
M.
Chshiev
,
H.
Bea
,
V.
Baltz
, and
W. E.
Bailey
,
Appl. Phys. Lett.
104
,
032406
(
2014
).
30.
D. M.
Polishchuk
,
T. I.
Polek
,
V. Y.
Borynskyi
,
A. F.
Kravets
,
A. I.
Tovstolytkin
,
A. M.
Pogorily
, and
V.
Korenivski
,
Fiz. Nizk. Temp.
46
,
963
(
2020
) [
Low Temp. Phys.
46, 813 (2020)].
You do not currently have access to this content.