A quantum description of the surface waves in an isotropic elastic body without the use of the semiclassical quantization is proposed. The problem about the surface waves is formulated in the Lagrangian and Hamiltonian representations. Within the framework of the generalized Debye model, the contribution of the surface phonons (“rayleighons”) to thermodynamic functions is calculated. It is emphasized that the role of the surface phonons can be significant and even decisive in low-dimensional systems, granular and porous media, and that their contribution to the total heat capacity increases with decreasing temperature.
REFERENCES
1.
P.
Debye
, Ann. Phys.
39
, 789
(1912
). 2.
3.
J.
Rayleigh
, Proc. London Math. Soc.
s1-17
, 4
(1885
). 4.
5.
6.
A.
Maradudin
, E.
Montroll
, and G.
Weiss
, Theory of Lattice Dynamics in the Harmonic Approximation
(Mir
, Moscow
, 1965
).7.
8.
9.
10.
11.
V. B.
Shikin
and Y. P.
Monarkha
, Two-dimensional Charged Systems in Helium
(Nauka
, Moscow
, 1989
).12.
Y.
Monarkha
and K.
Kono
, Two-Dimensional Coulomb Liquids and Solids
(Springer-Verlag
, New York
, 2004
).13.
14.
N.
Ashcroft
and N.
Mermin
, Solid State Phys.
, edited by M. I.
Kaganov
(Mir, Moscow, 1979
), Vol. 2
, p. 422
.15.
A. K.
Breger
and A. A.
Zhukhovitskii
, J. Chem. Phys.
14
, 569
(1946
). 16.
M.
Dupuis
, R.
Mazo
, and L.
Onzager
, J. Chem. Phys.
33
, 1452
(1960
). 17.
R.
Stratton
, J. Chem. Phys.
37
, 2972
(1962
). 18.
A. A.
Maradudin
and R. F.
Wallis
, Phys. Rev.
148
, 945
(1966
). 19.
20.
© 2021 Author(s).
2021
Author(s)
You do not currently have access to this content.