We have used the method of Wannier functions to calculate the frequencies and profiles of spin waves localized in one-dimensional magnonic crystals due to a gradient in the bias magnetic field. This localization of spin waves is analogous to the phenomenon of Bloch oscillations of quantum-mechanical electrons in crystals in a uniform electric field. As a convenient yet realistic model, we consider backward volume magnetostatic spin waves in a film of yttrium-iron garnet in a bias magnetic field comprising spatially uniform, cosine and gradient contributions. The spin-wave spectrum is shown to have the characteristic form of a Wannier–Stark ladder. The analytical results are verified using those obtained using numerical micromagnetic simulations. The physics of spin-wave Bloch oscillations combines the topics of magnonic crystals and graded magnonic index — the two cornerstones of modern magnonics.

1.
A. I.
Akhiezer
,
V. G.
Bar’yakhtar
, and
M. I.
Kaganov
,
Usp. Fiz. Nauk
71
,
533
(
1960
) [A. I. Akhiezer, V. G. Bar’yakhtar, and M. I. Kaganov,
Sov. Phys. Usp.
3, 567 (1960)].
2.
A. I.
Akhiezer
,
V. G.
Bar’yakhtar
, and
S. V.
Peletminskii
,
Spin Waves
(
John Wiley & Sons, North-Holland
,
Amsterdam
,
1968
).
3.
V. G.
Bar’yakhtar
and
S. V.
Maleev
,
J. Exper. Theor. Phys.
39
,
1430
(
1960
) [Sov. Phys. JETP 12, 995 (1961)].
4.
V. G.
Bar’yakhtar
,
B. A.
Ivanov
, and
M. V.
Chetkin
,
Usp. Fiz. Nauk
146
,
417
(
1985
).
5.
V. G.
Bar’yakhtar
, “The Phenomenological Theory of Relaxation Processes in Magnets,” in
Frontiers in Magnetism of Reduced Dimension Systems
, edited by
V. G.
Bar’yakthar
,
P. E.
Wigen
, and
N. A.
Lesnik
(NATO ASI Series, Springer, Dordrecht,
1998
), Vol.
49
.
6.
E.
Yablonovitch
,
J. Phys. Condens. Matter
5
,
2443
(
1993
).
7.
N.
Kumar
and
B.
Suthar
,
Advances in Photonic Crystals and Devices
(CRC Press, Boca Raton,
2019
).
8.
M. S.
Kushwaha
,
P.
Halevi
,
G.
Martínez
,
L.
Dobrzynski
, and
B.
Djafari-Rouhani
,
Phys. Rev. B
49
,
2313
(
1994
).
9.
E. V.
Tartakovskaya
,
Phys. Rev. B
62
,
11225
(
2000
).
10.
M.
Krawczyk
,
J.-C.
Lévy
,
D.
Mercier
, and
H.
Puszkarski
,
Phys. Lett. A
282
,
186
(
2001
).
11.
V. V.
Kruglyak
,
S. O.
Demokritov
, and
D.
Grundler
,
J. Phys. D
43
,
264001
(
2010
).
12.
M.
Krawczyk
and
D.
Grundler
,
J. Phys. Condens. Matter
26
,
123202
(
2014
).
13.
V. V.
Kruglyak
,
C. S.
Davies
,
V. S.
Tkachenko
,
O. Y.
Gorobets
,
Y. I.
Gorobets
, and
A. N.
Kuchko
,
J. Phys. D
50
,
094003
(
2017
).
14.
F.
Bloch
,
Zeitschrift für Physik
52
,
555
(
1929
).
15.
R.
Sapienza
,
P.
Costantino
,
D.
Wiersma
,
M.
Ghulinyan
,
C. J.
Oton
, and
L.
Pavesi
,
Phys. Rev. Lett.
91
,
263902
(
2003
).
16.
V.
Agarwal
,
J. A.
del Río
,
G.
Malpuech
,
M.
Zamfirescu
,
A.
Kavokin
,
D.
Coquillat
,
D.
Scalbert
,
M.
Vladimirova
, and
B.
Gil
,
Phys. Rev. Lett.
92
,
097401
(
2004
).
17.
N.
Lanzillotti-Kimura
,
A.
Fainstein
,
B.
Perrin
,
B.
Jusserand
,
O.
Mauguin
,
L.
Largeau
, and
A.
Lemaître
,
Phys. Rev. Lett.
104
,
197402
(
2010
).
18.
M. M.
de Lima
, Jr.
,
Y. A.
Kosevich
,
P. V.
Santos
, and
A.
Cantarero
,
Phys. Rev. Lett.
104
,
165502
(
2010
).
19.
M.
Ben Dahan
,
E.
Peik
,
J.
Reichel
,
Y.
Castin
, and
C.
Salomon
,
Phys. Rev. Lett.
76
,
4508
(
1996
).
20.
S. R.
Wilkinson
,
C. F.
Bharucha
,
K. W.
Madison
,
Q.
Niu
, and
M. G.
Raizen
,
Phys. Rev. Lett.
76
,
4512
(
1996
).
21.
Q.
Niu
,
X.-G.
Zhao
,
G. A.
Georgakis
, and
M. G.
Raizen
,
Phys. Rev. Lett.
76
,
4504
(
1996
).
22.
Y.
Ke
,
X.
Qin
,
H.
Zhong
,
J.
Huang
,
C.
He
, and
C.
Lee
,
Phys. Rev. A
91
,
053409
(
2015
).
23.
Y. V.
Kartashov
,
V. V.
Konotop
,
D. A.
Zezyulin
, and
L.
Torner
,
Phys. Rev. Lett.
117
,
215301
(
2016
).
24.
A. V.
Vashkovskii
and
E. G.
Lokk
,
J. Commun. Technol. Electron.
46
,
1163
(
2001
).
25.
K. R.
Smith
,
M. J.
Kabatek
,
P.
Krivosik
, and
M.
Wu
,
J. Appl. Phys.
104
,
344002
(
2008
).
26.
V. E.
Demidov
,
M. P.
Kostylev
,
K.
Rott
,
J.
Munchenberger
,
G.
Reiss
, and
S. O.
Demokritov
,
Appl. Phys. Lett.
99
,
082507
(
2011
).
27.
N.
Perez
and
L.
Lopez-Diaz
,
Phys. Rev. B
92
,
014408
(
2015
).
28.
T.
Langner
,
D. A.
Bozhko
,
S. A.
Bunyaev
,
G. N.
Kakazei
,
A. V.
Chumak
,
A. A.
Serga
,
B.
Hillebrands
, and
V. I.
Vasyuchka
,
J. Phys. D
51
,
344002
(
2018
).
29.
A. M.
Kosevich
,
Fiz. Nizk. Temp.
27
,
699
(
2001
) [
Low Temp. Phys.
27, 513 (2001)].
30.
V. V.
Gann
and
Y. A.
Kosevich
,
Fiz. Nizk. Temp.
36
,
909
(
2010
) [
Low Temp. Phys.
36, 722 (2010)].
31.
G.
Monsivais
and
C. L.
Ordóñez-Romero
,
J. Magn. Magn. Mater.
466
,
150
(
2018
).
32.
E. G.
Galkina
,
B. A.
Ivanov
,
S.
Savel’ev
, and
F.
Nori
,
Phys. Rev. B
77
,
134425
(
2008
).
33.
M.
Pardavi-Horvath
,
Phys. Status Solidi A
211
,
1030
(
2014
).
34.
G. H.
Wannier
,
Rev. Mod. Phys.
34
,
645
(
1962
).
35.
J. M.
Ziman
,
Principles of the Theory of Solids
(
Cambridge University Press
,
1972
).
36.
A.
Vansteenkiste
,
J.
Leliaert
,
M.
Dvornik
,
M.
Helsen
,
F.
Garcia-Sanchez
, and
B.
Van Waeyenberge
,
AIP Adv.
4
,
107133
(
2014
).
37.
M.
Dvornik
,
Y.
Au
, and
V. V.
Kruglyak
,
Top. Appl. Phys.
125
,
101
(
2013
).
38.
Y. I.
Gorobets
,
A. E.
Zyubanov
,
A. N.
Kuchko
, and
K. D.
Shedzhuri
,
Fiz. Tverd. Tela
34
,
1486
(
1992
).
39.
C. S.
Davies
and
V. V.
Kruglyak
,
Fiz. Nizk. Temp.
41
,
976
(
2015
) [
Low Temp. Phys.
41, 760 (2015)].
You do not currently have access to this content.