Here we describe the development of a computer algorithm to simulate the Time-Dependent Ginzburg-Landau equation (TDGL) and its application to understand superconducting vortex dynamics in confined geometries. Our initial motivation to get involved in this task was trying to understand better our experimental measurements on the dynamics of superconductors with vortices at high frequencies leading to microwave stimulated superconductivity due to the presence of vortex [A. Lara, et al., Sci. Rep. 5, 9187 (2015)].

1.
A. A.
Awad
,
K. Y.
Guslienko
,
J. F.
Sierra
,
G. N.
Kakazei
,
V.
Metlushko
, and
F. G.
Aliev
,
Appl. Phys. Lett.
96
,
012503
(
2010
).
2.
A.
Lara
,
F. G.
Aliev
,
A. V.
Silhanek
, and
V. V.
Moshchalkov
,
Sci. Rep.
5
,
9187
(
2015
).
3.
R.
Kato
,
Y.
Enomoto
, and
S.
Maekawa
,
Phys. Rev. B
44
,
6916
(
1991
).
4.
F.
Liu
,
M.
Mondello
, and
N.
Goldenfeld
,
Phys. Rev. Lett.
66
,
3071
(
1991
).
5.
H.
Frahm
,
S.
Ullah
, and
A.
Dorsey
,
Phys. Rev. Lett.
66
,
3067
(
1991
).
6.
R.
Kato
,
Y.
Enomoto
, and
S.
Maekawa
,
Phys. Rev. B
47
,
8016
(
1993
).
7.
M.
Machida
and
H.
Kaburaki
,
Phys. Rev. Lett.
71
,
3206
(
1993
).
8.
C.
Bolech
,
G. C.
Buscaglia
, and
A.
López
,
Phys. Rev. B
52
,
15719
(
1995
).
9.
Q.
Du
,
M. D.
Gunzburger
, and
J. S.
Peterson
,
Phys. Rev. B
46
,
9027
(
1992
).
10.
G.
Buscaglia
,
C.
Bolech
, and
A.
López
,
On the Numerical Solution of the Time-Dependent Ginzburg-Landau Equations in Multiply Connected Domains. Connectivity and Superconductivity
, edited by
J.
Berger
and
J.
Rubinstein
(
Springer
,
2000
).
11.
A. V.
Silhanek
,
W.
Gillijns
,
V. V.
Moshchalkov
,
V.
Metlushko
,
F.
Gozzini
,
B.
Ilic
,
W. C.
Uhlig
, and
J.
Unguris
,
Appl. Phys. Lett.
90
(
18
),
182501
(
2007
).
12.
D.
Perez de Lara
,
M.
Erekhinsky
,
E. M.
Gonzalez
,
Y. J.
Rosen
,
I. K.
Schuller
, and
J. L.
Vicent
,
Phys. Rev. B
83
,
174507
(
2011
).
13.
E. M.
Gonzalez
,
M. P.
Gonzalez
,
N. O.
Nunez
,
J. E.
Villegas
,
J. V.
Anguita
,
M.
Jaafar
,
A.
Asenjo
, and
J. L.
Vicent
,
Physica C
437–438
,
77
(
2006
).
14.
V. A.
Shklovskij
,
V. V.
Sosedkin
, and
O. V.
Dobrovolskiy
,
J. Phys. Condens. Matter.
26
,
2
(
2013
).
15.
O. V.
Dobrovolskiy
and
M.
Huth
,
Appl. Phys. Lett.
106
,
142601
(
2015
).
16.
O. V.
Dobrovolskiy
,
R.
Sachser
,
V. M.
Bevz
,
A.
Lara
,
F. G.
Aliev
,
V. A.
Shklovskij
,
A. I.
Bezuglyj
,
R. V.
Vovk
, and
M.
Huth
,
Rap. Res. Lett.
13
,
1
(
2018
).
17.
M.
Morelle
,
N.
Schildermans
, and
V. V.
Moshchalkov
,
Appl. Phys. Lett.
89
,
112512
(
2006
).
18.
N. S.
Lin
,
T. W.
Heitmann
,
K.
Yu
,
B. L. T.
Plourde
, and
V. R.
Misko
,
Phys. Rev. B
84
,
144511
(
2011
).
19.
V. V.
Pryadun
,
J.
Sierra
,
F. G.
Aliev
,
D. S.
Golubovic
, and
V. V.
Moshchalkov
,
Appl. Phys. Lett.
88
,
062517
(
2006
).
20.
21.
T. S.
Alstram
,
M. P.
Sørensen
,
N. F.
Pedersen
, and
S.
Madsen
,
Acta Appl. Math.
115
,
63
(
2011
).
22.
D.
Cerbu
,
V. N.
Gladilin
,
J.
Cuppens
,
J.
Fritzsche
,
J.
Tempere
,
J. T.
Devreese
,
V. V.
Moshchalkov
, and
A. V.
Silhanek
, and
J.
Van de Vondel
,
New J. Phys.
15
,
063022
(
2013
).
23.
G. R.
Berdiyorov
,
A. K.
Elmurodov
,
F. M.
Peeters
, and
D. Y.
Vodolazov
,
Phys. Rev. B
79
,
174506
(
2009
).
24.
M.
Iavarone
,
A.
Scarfato
,
F.
Bobba
,
M.
Longobardi
,
G.
Karapetrov
,
V.
Novosad
,
V.
Yefremenko
,
F.
Giubileo
, and
A. M.
Cucolo
,
Phys. Rev. B
84
,
024506
(
2011
).
25.
M.
Donaire
,
T. W. B.
Kibble
, and
A.
Rajantie
,
New J. Phys.
9
,
148
(
2007
).
26.
T.
Koyamac
,
M.
Machida
,
M.
Kato
, and
T.
Ishida
,
Physica C
445–448
,
257
(
2006
).
27.
Y.
Wang
,
A.
Glatz
,
G. J.
Kimmel
,
I. S.
Aranson
,
L. R.
Thoutam
,
Z.
Xiao
,
G. R.
Berdiyorov
,
F. M.
Peeters
,
G. W.
Crabtree
, and
W.
Kwok
,
PNAS
114
,
E10274
(
2017
).
28.
A.
Lara
,
F. G.
Aliev
,
V. V.
Moshchalkov
, and
Y. M.
Galperin
,
Phys. Rev. Appl.
8
,
034027
(
2017
).
29.
M. V.
Milosevic
and
R.
Geurts
,
Physica C
470
,
791
(
2010
).
30.
J.
Clarke
and
F. K.
Wilhelm
,
Nature
453
,
1031
(
2008
).
You do not currently have access to this content.