The total yield of particles desorption from solid Ar doped with CH4 under irradiation with an electron beam was studied at 5 K. The measurements were carried out at a CH4 concentration of 1 and 5%. The effect of explosive delayed desorption from the surface of argon matrix was discovered in both mixtures. With a higher concentration of CH4, it appeared at lower doses and was more pronounced. Two types of self-oscillations were observed: long-period bursts (on a time scale of about 25 min) and short-period oscillations (of about 10 s). In pure solid Ar delayed desorption was not observed despite the accumulation of a significant number of excess electrons, exceeding their number in mixtures of Ar and CH4 as it was found by measurements of thermally stimulated exoelectron emission. This finding discards the model of Coulomb explosion for the phenomenon detected. In this paper we focused on the role of hydrogen (one of the radiolysis products) in delayed desorption. The formation of atomic hydrogen in the matrix was traced via cathodoluminescence by the emission band of the excimer Ar2H* at 166 nm. Desorption of excited hydrogen atoms in the excited state was detected by the Ly-α emission line. A decrease of the Ar2H* band intensity at higher concentration of CH4 was found evidencing bleaching these centers likely due to recombination of H atoms with energy release and formation of molecular hydrogen. The data obtained give additional evidence in favor of the hypothesis that the exothermic reactions of radiolysis products serve as a stimulating factor for delayed desorption.

1.
R. N.
Clark
,
R.
Carlson
,
W.
Grundy
, and
K.
Noll
, "
Observed ices in the Solar System
," in
The Science of Solar System Ices; Astrophysics and Space Science Library
, edited by
M. S.
Gudipati
and
J.
Castillo-Rogez
(
Springer
,
New York
,
2012
), Vol. 356, p.
3.
3.
C. K.
Materese
,
D. P.
Cruikshank
,
S. A.
Sandford
,
H.
Imanaka
, and
M.
Nuevo
,
Astrophys. J.
812
,
150
(
2015
).
4.
M. E.
Brown
,
C. A.
Trujillo
, and
D. L.
Rabinowitz
,
Astrophys. J.
635
,
L97
(
2005
).
5.
D. P.
Cruikshank
,
T. L.
Roush
,
T. C.
Owen
,
T. R.
Geballe
,
C.
de Bergh
,
B.
Schmitt
,
R. H.
Brown
, and
M. J.
Bartholomew
,
Sciутсe
261
,
742
(
1993
).
6.
M. A.
Allodi
,
R. A.
Baragiola
,
G. A.
Baratta
,
M. A.
Barucci
,
G. A.
Blake
,
J. R.
Brucato
,
C.
Contreras
,
S. H.
Cuylle
,
P.
Boduch
,
D.
Fulvio
,
M. S.
Gudipati
,
S.
Ioppolo
,
Z.
Kaňuchová
,
A.
Lignell
,
H.
Linnartz
,
M. E.
Palumbo
,
U.
Raut
,
H.
Rothard
,
F.
Salama
,
E. V.
Savchenko
,
E.
Sciamma-O’Brien
,
G.
Strazzulla
, and
G.
Strazzulla
,
Space Sci. Rev.
180
,
101
(
2013
).
7.
G.
Foti
,
L.
Calcagno
,
K.
Sheng
, and
G.
Strazzulla
,
Nature
310
,
126
(
1984
).
8.
R. I.
Kaiser
,
G.
Eich
,
A.
Gabrysch
, and
K.
Roessler
,
The Astrophys. J.
484
,
487
(
1997
).
9.
R. I.
Kaiser
and
K.
Roessler
,
Astrophys. J.
503
,
959
(
1998
).
10.
C. F.
Mejίa
,
A. L. F.
de Barros
,
V.
Bordalo
,
E. F.
da Silveira
,
P.
Boduch
,
A.
Domaracka
, and
H.
Rothard
,
Mon. Notices Royal Astron. Soc.
433
,
2368
(
2013
).
11.
M. E.
Palumbo
,
G. A.
Baratta
,
D.
Fulvio
,
M.
Garozzo
,
O.
Gomis
,
G.
Leto
,
F.
Spinella
, and
G.
Strazzulla
,
J. Phys. Conf. Ser.
101
,
012002
(
2008
).
12.
R.
Brunetto
,
M. A.
Barucci
,
E.
Dotto
, and
G.
Strazzulla
,
Astrophys. J.
644
,
646
(
2006
).
13.
F. A.
Vasconcelos
,
S.
Pilling
,
W. R. M.
Rocha
,
H.
Rothard
,
P.
Boduch
, and
J. J.
Ding
,
Phys. Chem. Chem. Phys.
19
,
12845
(
2017
).
14.
A. L. F
de Barros
,
V.
Bordalo
,
E.
Seperuelo Duarte
,
E. F.
da Silveira
,
A.
Domaracka
,
H.
Rothard
, and
P.
Boduch
,
Astronomy & Astrophysics A
531
,
160
(
2011
).
15.
T.
Huang
and
W. H.
Hamill
,
J. Phys. Chem.
78
,
2077
(
1974
).
16.
C. J.
Bennett
,
C. S.
Jamieson
,
Y.
Osamura
, and
R. I.
Kaiser
,
Astrophys. J.
653
,
792
(
2006
).
17.
M.
Barberio
,
R.
Vasta
,
P.
Barone
,
G.
Manicò
, and
F.
Xu
,
World J. Condens. Matter Phys.
3
,
14
(
2013
).
18.
B. M.
Jones
and
R. I.
Kaiser
,
J. Phys. Chem. Lett.
4
,
1965
(
2013
).
19.
M. J.
Abplanalp
,
B. M.
Jones
, and
R. I.
Kaiser
,
Phys. Chem. Chem. Phys.
20
,
543
(
2018
).
20.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
,
A.
Barabashov
,
G.
Gumenchuk
, and
V.
Bondybey
,
Nucl. Instr. Meth. B
435
,
38
(
2018
).
21.
S.
Esmaili
,
A. D.
Bass
,
P.
Cloutier
,
L.
Sanche
, and
M. A.
Huels
,
J. Chem. Phys.
147
,
224704
(
2017
).
22.
K. I.
Öberg
,
E. F.
van Dishoeck
,
H.
Linnartz
, and
S.
Andersson
,
Astrophys. J.
718
,
832
(
2010
).
23.
J. B.
Bossa
,
D. M.
Paardekooper
,
K.
Isokoski
, and
H.
Linnartz
,
Phys. Chem. Chem. Phys.
17
,
17346
(
2015
).
24.
R.
Dupuy
,
M.
Bertin
,
G.
Féraud
,
X.
Michaut
,
P.
Jeseck
,
M.
Doronin
,
L.
Philippe
,
C.
Romanzin
, and
J.-H.
Fillion
,
Astronomy & Astrophysics A
603
,
A61
(
2017
).
25.
J. M.
Carpenter
,
Nature
330
,
358
(
1987
).
26.
T. L.
Scott
,
J. M.
Carpenter
, and
M. E.
Miller
, Preprint ANL/IPNS/CP-98533 (
1999
).
27.
E.
Kulagin
,
S.
Kulikov
,
V.
Melikhov
, and
E.
Shabalin
,
Nucl. Instrum. Methods Phys. Res. B
215
,
181
(
2004
).
28.
O.
Kirichek
,
C. R.
Lawson
,
D. M.
Jenkins
,
C. J. T.
Ridley
, and
D. J.
Haynes
,
Cryogenics
88
,
101
(
2017
).
29.
O.
Kirichek
,
E. V.
Savchenko
,
C. R.
Lawson
,
I. V.
Khyzhniy
,
D. M.
Jenkins
,
S. A.
Uyutnov
,
M. A.
Bludov
, and
D. J.
Haynes
,
J. Phys. Conf. Ser.
969
,
012006
(
2018
).
30.
E. V.
Savchenko
,
O.
Kirichek
,
C. R.
Lawson
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
, and
M. A.
Bludov
,
Nucl. Instrum. Methods Phys. Res. B
433
,
23
(
2018
).
31.
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
, and
E.
Savchenko
,
Fiz. Nizk. Temp.
44
,
1565
(
2018
) [
Low Temp. Phys.
44, 1223 (2018)].
32.
E.
Savchenko
,
I.
Khyzhniy
,
S.
Uyutnov
,
M.
Bludov
,
G.
Gumenchuk
, and
V.
Bondybey
, “
Effects induced by electron beam in methane ices
,”
Nucl. Instrum. Methods Phys. Res. Sec. B
(published online
2018
).
33.
K. S.
Song
and
R. T.
Williams
,
Self-Trapped Excitons
(
Springer-Verlag
,
Berlin
,
1996
).
34.
R.
van Harrevelt
,
J. Chem. Phys.
126
,
204313
(
2007
).
35.
Vibrational Spectroscopy of Trapped Species
, edited by
H. E.
Hallam
(
John Wiley & Sons
,
London
,
1973
).
36.
A.
Chamberland
,
R.
Belzile
, and
A.
Cabana
,
Can. J. Chem.
48
,
1129
(
1970
).
37.
G. B.
Gumenchuk
,
M. A.
Bludov
, and
A. G.
Belov
,
Fiz. Nizk. Temp.
31
,
237
(
2005
) [
Low Temp. Phys.
31, 179 (2005)].
38.
M.
Kraas
and
P.
Gurtler
,
Chem. Phys. Lett.
174
,
396
(
1990
).
39.
E. V.
Savchenko
,
I. V.
Khyzhniy
,
S. A.
Uyutnov
,
G. B.
Gumenchuk
,
A. N.
Ponomaryov
,
M. K.
Beyer
, and
V. E.
Bondybey
,
Fiz. Nizk. Temp.
36
,
512
(
2010
) [
Low Temp. Phys.
36, 407 (2010)].
40.
I. Y.
Fugol
,
A. G.
Belov
,
E. V.
Savchenko
, and
Y. B.
Poltoratskin
,
Fiz. Nizk. Temp.
1
,
203
(
1975
) [Sov. J. Low Temp. Phys. 1, 98 (1975)].
41.
D. E.
Grosjean
,
R. A.
Vidal
,
R. A.
Baragiola
, and
W. L.
Brown
,
Phys. Rev. B
56
,
6975
(
1997
).
42.
Y.
Tanaka
and
K.
Yoshino
,
J. Chem. Phys.
53
,
2012
(
1970
).
43.
T. E.
Stewart
,
J. Opt. Soc. America
60
,
1290
(
1970
).
44.
W.
Krötz
,
A.
Ulrich
,
B.
Busch
,
G.
Ribitzki
, and
J.
Wieser
,
Phys. Rev. A
43
,
6089
(
1991
).
45.
A. M.
Boichenko
,
V. F.
Tarasenko
,
S. I.
Yakovlenko
,
Proc. SPIE
4071
(
2000
).
46.
T.
Heindl
,
M.
Dandl
,
R.
Hofmann
,
L.
Krücken
,
W.
Oberauer
,
J.
Potzel
,
J.
Wieser
, and
A.
Ulrich
,
Europhys. Lett.
91
,
62002
(
2010
).
47.
V. I.
Feldman
,
F. F.
Sukhov
, and
A. Y.
Orlov
,
J. Chem. Phys.
128
,
214511
(
2008
).
48.
G. K.
Oserov
,
D. S.
Bezrukov
, and
A. A.
Buchachenko
,
Fiz. Nizk. Temp.
45
,
347
(
2019
) [
Low Temp. Phys.
45, 301 (2019)].
49.
L. B.
Knight
, Jr.
,
W. E.
Rice
,
L.
Moore
,
E. R.
Davidson
, and
R. S.
Dailey
,
J. Chem. Phys.
109
,
1409
(
1998
).
50.
V. I.
Sugakov
,
Lectures in Synergetics
, World Scientific Series on Nonlinear Science (
World Scientific
,
Singapore
,
1998
), Vol. 33.
You do not currently have access to this content.