A theoretical study of gold fullerenes Au16–Au20 as strongly correlated electron systems is carried out within the framework of the Hubbard model in the approximation of static fluctuations. The Fourier transforms of anticommutator Green’s functions for electrons at different fullerene sites of gold atoms are obtained and energy spectra are constructed. The density of electron states, the graphical depiction of the equation for the chemical potential, thermodynamic averages characterizing electron transitions among adjacent sites and the description of the probabilities of detecting two electrons with oppositely oriented spin projections on a single site within nanosystems are presented and analyzed. The considered gold fullerenes are demonstrated to possess semiconductor properties.

1.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature
318
,
162
(
1985
).
2.
S.
Bulusu
,
X.
Li
,
L.
Wang
, and
X. G.
Zeng
,
Proc. Natl. Acad. Sci. U.S.A.
103
,
8362
(
2006
).
3.
G.
Schmid
and
U.
Simon
,
Chem. Commun.
6
,
697
(
2005
).
4.
M.
Homberger
and
U.
Simon
,
Phil. Trans. R. Soc. A
368
,
1405
(
2010
).
5.
Y.
Okinaka
,
Gold Bull.
33
,
117
(
2000
).
6.
P.
Gruene
,
D. M.
Rayner
,
B.
Redlich
,
A. F. G.
van der Meer
,
J. T.
Lyon
,
G.
Meijer
, and
A.
Fielicke
,
Science
321
,
674
(
2008
).
7.
M. E.
Stewart
,
C. R.
Anderton
,
L. B.
Thompson
,
J.
Maria
,
S. K.
Gray
,
J. A.
Rogers
, and
R. G.
Nuzzo
,
Chem. Rev.
108
,
494
(
2008
).
8.
D. I.
Gittins
,
D.
Bethell
,
D. J.
Schiffrin
, and
R. J.
Nichols
,
Nature
408
,
67
(
2000
).
9.
M.
Haruta
,
T.
Kobayashi
,
H.
Sano
, and
N.
Yamada
,
Chem. Lett.
4
,
405
(
1987
).
10.
M.
Haruta
,
N.
Yamada
,
T.
Kobayashi
, and
S.
Iijima
,
J. Catal.
115
,
301
(
1989
).
11.
G. I.
Mironov
,
Phys. Solid State
50
,
182
(
2008
).
12.
G. I.
Mironov
,
Phys. Met. Metallogr.
105
,
355
(
2008
).
13.
E. S.
Kryachko
and
F.
Remacle
,
Int. J. Quantum Chem.
107
,
2922
(
2007
).
14.
K. J.
Taylor
,
C. L.
Pettiette-Hall
, and
R. E.
Smalley
,
J. Chem. Phys.
96
,
3319
(
1992
).
15.
C.
Jackschath
,
I.
Rabin
, and
W.
Schulz
,
Phys. Chem.
86
,
1200
(
1992
).
16.
J.
Li
,
X.
Li
,
H.-J.
Zhai
, and
L.-S.
Wang
,
Science
299
,
864
(
2003
).
17.
Y.
Gao
,
S.
Bulusu
, and
X. C.
Zeng
,
J. Am. Chem. Soc.
127
,
15680
(
2005
).
18.
L. N.
Sidorov
,
M. A.
Yurovskaya
,
A. Ya.
Borschevsky
,
I. V.
Trushkov
, and
I. N.
Ioffe
,
Fullereny [Fullerenes]
(
Ekzamen
,
Moscow
,
2005
).
19.
R. C.
Haddon
,
Acc. Chem. Res.
25
,
127
(
1992
).
20.
G. I.
Mironov
and
E. D.
Izergin
,
Fiz. Nizk. Temp.
33
,
1365
(
2007
) [
Low Temp. Phys
. 33, 1038 (2007)].
21.
G. I.
Mironov
,
Phys. Solid State
49
,
527
(
2007
).
22.
G. I.
Mironov
and
A. I.
Murzashev
,
Phys. Solid State
53
,
2273
(
2011
).
23.
A. D.
Shkop
,
S. I.
Kulinich
,
A. V.
Parafilo
, and
I. V.
Krive
,
Fiz. Nizk. Temp.
43
,
1745
(
2017
) [
Low Temp. Phys.
43, 1392 (2017)].
24.
J.
Hubbard
,
Proc. Roy. Soc. A
276
,
238
(
1963
).
25.
S. P.
Shubin
and
S. V.
Wonsowskii
,
Proc. Roy. Soc. A
145
,
159
(
1934
).
26.
E. R.
Filippova
and
G. I.
Mironov
,
Fiz. Nizk. Temp.
37
,
644
(
2011
) [
Low Temp. Phys
. 37, 511 (2011)].
27.
G. I.
Mironov
,
Fiz. Nizk. Temp.
43
,
902
(
2017
) [
Low Temp. Phys
. 43, 724 (2017)].
28.
P. N.
Dyachkov
,
Electronic Properties and Applications of Nanotubes
(
BINOM
,
Moscow
,
2011
).
29.
P. N.
Dyachkov
,
Russ. J. Inorg. Chem.
60
,
1045
(
2015
).
30.
G. I.
Mironov
,
Russ. J. Inorg. Chem.
63
,
72
(
2018
).
31.
S. V.
Tyablikov
,
Methods of Quantum Theory of Magnetism
(
Science
,
Moscow
,
1975
).
32.
X. P.
Yang
and
J. M.
Dong
,
Phys. Rev. B
71
,
233403
(
2005
).
33.
A.
Rubo
,
D.
Sánchez-Portal
,
E.
Artacho
,
P.
Ordejón
, and
J. M.
Soler
,
Phys. Rev. Lett.
82
,
3520
(
1999
).
34.
J.
Jiang
,
J.
Dong
, and
D. Y.
Xing
,
Phys. Rev. B
65
,
245418
(
2002
).
You do not currently have access to this content.