We propose a new method for calculating the dependence of the critical current on an external magnetic field, and the distribution of this current over the layers in superconducting multilayered structures. The method is based on a numerical solution of a system of nonlinear Ginzburg–Landau equations that describe the behavior of a superconducting plate carrying a transport current in a magnetic field, provided that it does not contain Abrikosov vortices. The way in which boundary conditions in the Ginzburg–Landau theory influence the critical state of superconducting layered structures is also considered. From a mathematical point of view, application of a general boundary condition to the system of Ginzburg–Landau equations leads to a change in the order parameter along the thickness of the thin superconducting plates. The physical nature of this phenomenon is explained by the proximity effect at the superconductor–normal metal (SN) interface, which leads to the suppression of the order parameter near the SN interface. The resulting calculated dependences of the plates’ critical current on the magnetic field strength applied parallel to the layers are used to determine the critical current of multilayer structures. It is assumed that the mutual influence of superconducting layers occurs only via the magnetic field that they create.

1.
A.
Campbell
and
J.
Ivets
,
Critical Currents in Superconductors
(
Mir
,
Moscow
,
1975
).
2.
G.
Blatter
,
M. V.
Feigel’man
,
V. B.
Geshkenbein
,
A. I.
Larkin
, and
V. M.
Vinokur
,
Rev. Mod. Phys.
66
,
1125
(
1994
).
3.
S.
Takacs
,
Phys. Status Solidi A
74
,
437
(
1982
).
4.
S.
Ami
and
K.
Maki
,
Prog. Theor. Phys.
53
,
1
(
1975
).
5.
M.
Kulic
and
L.
Dobrosavljevic
,
Phys. Status Solidi B
75
,
677
(
1976
).
6.
A. N.
Lykov
,
A. Y.
Tsvetkov
, and
G. F.
Zharkov
,
JETP
128
,
392
(
2005
).
7.
A. N.
Lykov
and
A. Y.
Tsvetkov
,
B Phys. Rev.
76
,
144517
(
2007
).
8.
E. A.
Andryushin
,
V. L.
Ginzburg
, and
A. P.
Silin
,
Adv. Phys. Sci.
163
,
105
(
1993
).
9.
R. O.
Zaitsev
,
JETP
48
,
1759
(
1965
).
10.
P. G.
De Gennes
,
Rev. Mod. Phys.
36
,
225
(
1964
).
11.
A. V.
Svidzinsky
,
Spatially Innhomogeneous Problems in the Theory of Superconductivity
(
Nauka
,
Moscow
,
1982
).
12.
S. V.
Kuplevakhsky
and
S. V.
Naydenov
,
B Phys. Rev.
56
,
2764
(
1997
).
13.
J.
Simonin
,
B Phys. Rev.
33
,
7830
(
1986
).
14.
W. E.
Lawrence
and
S.
Doniach
,
Proc. Conf. LT-12
, Kyoto (
1970
),
361
.
15.
A. N.
Lykov
,
Phys. Lett. A
372
,
4747
(
2008
).
16.
A. N.
Lykov
,
Int. J. Modern Phys. B
23
,
4269
(
2009
).
17.
L.
Bozovich
,
G.
Logvenov
,
M. A. J.
Verhoeven
,
P.
Caputo
,
E.
Goldobinand
, and
T. H.
Geball
,
Nature
422
,
873
(
2003
).
18.
P. I.
Bezotosny
,
S. Y.
Gavrilkin
,
A. N.
Lykov
, and
A. Y.
Tsvetkov
,
KSF FIAN
41
,
3
(
2014
); ibid 41, 26 (2014)
19.
P. I.
Bezotosny
,
S. Y.
Gavrilkin
,
A. N.
Lykov
, and
A. Y.
Tsvetkov
,
Phys. Solid State
57
,
1277
(
2015
).
20.
A. A.
Abrikosov
,
JETP
46
,
1464
(
1964
).
21.
V. V.
Shmidt
and
G. S.
Mkrtchyan
,
Adv. Phys. Sci.
112
,
459
(
1974
).
You do not currently have access to this content.