This review is an attempt to consistently examine the electronic spectrum of graphene containing defects (such as adsorbed atoms, substitutional atoms, vacancies) that can be adequately described using the Lifshitz model. Therefore, the known Hamiltonian of this model is chosen for the case of two-dimensional relativistic electrons, and the criteria for the appearance of an impurity resonance near the Dirac point are provided. The theory of concentration band structure transformation in graphene is outlined, from which it follows that a transport gap opens in the vicinity of the impurity resonance energy when a specific value of the impurity concentration is reached. Along the way, the question of whether or not it is possible (or impossible) for Dirac quasiparticles to become localized in such a spatially disordered system is analyzed. Based on this, it is feasible to explain and describe the recently observed in impure graphene phenomenon of metal-insulator transition, which turns out to be a direct consequence of the system’s Fermi energy falling into the domain of the transport gap. The concept of local spectrum rearrangement, which can also unfold as the defect concentration increases, is introduced and justified for graphene. We formulate the physical reasons why the minimum of graphene’s low-temperature conductivity dependence on the Fermi energy of electrons does correspond to the impurity resonance energy, and not the Dirac point, as it has been claimed in a number of theoretical and experimental studies. Furthermore, the mentioned minimum value proves to be not universal, but is dependent, instead, on the concentration of defects. The analytical considerations of the impurity effects are accompanied by numerical simulations of the examined system, and a complete correspondence between these two approaches is established as a result. In particular, the general scenarios of spectrum rearrangement, electron state localization, as well as of effects having a local nature, are confirmed.

1.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
Y.
Zhang
,
S. V.
Dubonos
,
I. V.
Grigorieva
, and
A. A.
Firsov
,
Science
306
,
666
(
2004
).
3.
P. R.
Wallace
,
Phys. Rev.
71
,
622
(
1947
).
4.
G. W.
Semenoff
,
Phys. Rev. Lett.
53
,
2449
(
1984
).
5.
V. P.
Gusynin
and
S. G.
Sharapov
,
Phys. Rev. Lett.
95
,
146801
(
2005
).
6.
V. P.
Gusynin
and
S. G.
Sharapov
,
Phys. Rev. B
73
,
245411
(
2006
).
8.
M. A.
Ivanov
,
FTT
12
,
1895
(
1970
).
9.
10.
F.
Ducastelle
and
F.
Gautier
,
J. Phys. F
6
,
2039
(
1976
).
11.
A. F.
Ioffe
and
A. R.
Regel
,
Prog. Semicond.
4
,
237
(
1960
).
12.
Y. V.
Skrypnyk
,
Phys. Rev. B
70
,
212201
(
2004
).
13.
Y.
Skrypnyk
,
J. Non-Crys. Solids
352
,
4325
(
2006
).
14.
F.
Schedin
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
E. H.
Hill
,
P.
Blake
, and
K. S.
Novoselov
,
Nat. Mater.
6
,
652
(
2007
).
15.
N. M. R.
Peres
,
F.
Guinea
, and
A. H.
Castro Neto
,
Phys. Rev. B
73
,
125411
(
2006
).
16.
B. Y.-K.
Hu
,
E. H.
Hwang
, and
S.
Das Sarma
,
Phys. Rev. B
78
,
165411
(
2008
).
17.
S.
Wu
,
L.
Jing
,
Q.
Li
,
Q. W.
Shi
,
J.
Chen
,
X.
Wang
, and
J.
Yang
,
Phys. Rev. B
77
,
195411
(
2008
).
18.
S. Y.
Zhou
,
G.-H.
Gweon
,
J.
Graf
,
A. V.
Fedorov
,
C. D.
Spataru
,
R. D.
Diehl
,
Y.
Kopelevich
,
D.-H.
Lee
,
S. G.
Louie
, and
A.
Lanzara
,
Nature Phys.
2
,
595
(
2006
).
19.
A.
Bostwick
,
T.
Ohta
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
,
Nature Phys.
3
,
36
(
2007
).
20.
K. S.
Novoselov
,
A. K.
Geim
,
S. V.
Morozov
,
D.
Jiang
,
M. I.
Katsnelson
,
I. V.
Grigorieva
,
S. V.
Dubonos
, and
A. A.
Firsov
,
Nature
438
,
197
(
2005
).
21.
Y.
Zhang
,
Y.-W.
Tan
,
H. L.
Stormer
, and
P.
Kim
,
Nature
438
,
201
(
2005
).
22.
S. G.
Sharapov
,
V. P.
Gusynin
, and
H.
Beck
,
Phys. Rev. B
69
,
075104
(
2004
).
23.
V. P.
Gusynin
and
S. G.
Sharapov
,
Phys. Rev. B
71
,
125124
(
2005
).
24.
T.
Ando
,
J. Phys. Soc. Japan
74
,
777
(
2005
).
25.
F.
Ducastelle
,
Phys. Rev. B
88
,
075413
(
2013
).
26.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Fiz. Nizk. Temp.
42
,
863
(
2016
) [
Low. Temp. Phys.
42, 679 (2016)].
27.
T.
Stauber
,
N. M. R.
Peres
, and
F.
Guinea
,
Phys. Rev. B
76
,
205423
(
2007
).
28.
A.
Feher
,
I. A.
Gospodarev
,
V. I.
Grishaev
,
K. V.
Kravchenko
,
E. V.
Manzheliy
,
E. S.
Syrkin
, and
S. B.
Feodosyev
,
Fiz. Nizk. Temp.
35
,
862
(
2009
) [
Low Temp. Phys.
35, 679 (2009)].
29.
A.
Feher
,
E.
Syrkin
,
S.
Feodosyev
,
I.
Gospodarev
, and
K.
Kravchenko
, Quasi-Particle Spectra on Substrate and, Embedded Graphene Monolayers Physics and Applications of Graphene — Theory, InTech (
2011
).
30.
V. V.
Eremenko
,
V. A.
Sirenko
,
I. A.
Gospodarev
,
E. S.
Syrkin
,
S. B.
Feodosyev
,
I. S.
Bondar
, and
K. A.
Minakova
,
J. Science: Adv. Mat. Devices
1
,
167
(
2016
).
31.
V. V.
Eremenko
,
V. A.
Sirenko
,
I. A.
Gospodarev
,
E. S.
Syrkin
,
S. B.
Feodosyev
,
I. S.
Bondar
,
K. A.
Minakova
, and
A.
Feher
,
J. Phys. Conf. Series
969
,
012021
(
2018
).
32.
C.
Bena
and
S. A.
Kivelson
,
Phys. Rev. B
72
,
125432
(
2005
).
33.
M. A.
Ivanov
and
Y. V.
Skrypnyk
,
Solid State Phys.
,
36
,
94
(
1994
).
34.
V. M.
Pereira
,
F.
Guinea
,
J. M. B.
Lopes dos Santos
,
N. M. R.
Peres
, and
A. H.
Castro Neto
,
Phys. Rev. Lett.
96
,
036801
(
2006
).
35.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
J. Phys. Condens. Matter
25
,
195301
(
2013
).
36.
M. A.
Ivanov
,
Y. G.
Pogorelov
,
JETP
76
,
1010
(
1979
).
37.
Y. V.
Skrypnyk
,
V. M.
Loktev
,
Phys. Rev. B
73
,
241402(R)
(
2006
).
38.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Fiz. Nizk. Temp.
33
,
1002
(
2007
) [
Low Temp. Phys.
33, 762 (2007)].
39.
S. S.
Pershoguba
,
Y. V.
Skrypnyk
, and
V. M.
Loktev
,
Phys. Rev. B
80
,
214201
(
2009
).
40.
Y. V.
Skrypnyk
and
B. I.
Min
,
Progr. Theor. Phys.
108
,
1021
(
2002
).
41.
A. V.
Balatsky
,
I.
Vekhter
, and
Ja–Xn
Zhu
,
Rev. Mod. Phys.
78
,
373
(
2006
).
42.
N.
Nakai
,
P.
Miranovic
,
M.
Ichioka
,
H. F.
Hess
,
K.
Uchiyama
,
H.
Nishimori
,
S.
Kaneko
,
N.
Nishida
, and
K.
Machida
,
Phys. Rev. Lett.
97
,
147001
(
2006
).
43.
A. C.
Fang
,
L.
Capriotti
,
D. J.
Scalapino
,
S. A.
Kivelson
,
N.
Kaneko
,
M.
Greven
, and
A.
Kapitulnik
,
Phys. Rev. Lett.
96
,
017007
(
2006
).
44.
Y.
Niimi
,
T.
Matsui
,
H.
Kambara
,
K.
Tagami
,
M.
Tsukada
, and
H.
Fukuyama
,
Phys. Rev. B
73
,
085421
(
2006
).
45.
L.
Capriotti
,
D. J.
Scalapino
, and
R. D.
Sedgewick
,
Phys. Rev. B
68
,
014508
(
2003
).
46.
Lnyn
Zhu
,
W. A.
Atkinson
, and
P. J.
Hirschfeld
,
Phys. Rev. B
69
,
060503(R)
(
2004
).
47.
O.
Kodra
and
W. A.
Atkinson
,
Phys. Rev. B
73
,
045404
(
2006
).
48.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Phys. Rev. B
75
,
245401
(
2007
).
49.
T. O.
Wehling
,
A. V.
Balatsky
,
M. I.
Katsnelson
,
A. I.
Lichtenstein
,
K.
Scharnberg
, and
R.
Wiesendanger
,
Phys. Rev. B
75
,
125425
(
2007
).
50.
R. J.
Elliott
,
J. A.
Krumhunsl
, and
P. L.
Leath
,
Rev. Mod. Phys.
46
,
465
(
1974
).
51.
N. F.
Schwabe
and
R. J.
Elliott
,
Phys. Rev. B
53
,
5301
(
1996
).
52.
L.
Zhu
,
W. A.
Atkinson
, and
P. J.
Hirschfeld
,
Phys. Rev. B
67
,
094508
(
2003
).
53.
W. A.
Atkinson
,
P. J.
Hirschfeld
, and
L.
Zhu
,
Phys. Rev. B
68
,
054501
(
2003
).
54.
55.
A. R.
Akhmerov
and
C. W. J.
Beenakker
,
Phys. Rev. B
77
,
085423
(
2008
).
56.
V. M.
Pereira
,
J. M. B.
Lopes dos Santos
, and
A. H.
Castro Neto
,
Phys. Rev. B
77
,
115109
(
2008
).
57.
C.
Lin
,
Y.
Feng
,
Y.
Xiao
,
M.
Durr
,
X.
Huang
,
X.
Xu
,
R.
Zhao
,
E.
Wang
,
X.-Z.
Li
, and
Z.
Hu
,
Nano Lett.
15
(
2
),
903
(
2015
).
58.
S. Y.
Zhou
,
G.-H.
Gweon
,
C. D.
Spataru
,
J.
Graf
,
D.-H.
Lee
,
See G.
Louie
, and
A.
Lanzara
,
Phys. Rev. B
71
,
161403(R)
(
2005
).
59.
J. L.
McChesney
,
A.
Bostwick
,
T.
Ohta
,
K. V.
Emtsev
,
T.
Seyller
,
K.
Horn
, and
E.
Rotenberg
, arXiv 0705.3264 (
2007
).
60.
W.-K.
Tse
and
S.
Das Sarma
,
Phys. Rev. Lett.
99
,
236802
(
2007
).
61.
M.
Calandra
and
F.
Mauri
,
Phys. Rev. B
76
,
161406(R)
(
2007
).
62.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Fiz. Nizk. Temp.
34
,
1040
(
2008
) [
Low. Temp. Phys.
34, 818 (2008)].
63.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
JETP Letters
94
,
605
(
2011
).
64.
Y.-W.
Tan
,
Y.
Zhang
,
K.
Bolotin
,
Y.
Zhao
,
S.
Adam
,
E. H.
Hwang
,
S.
Das Sarma
,
H. L.
Stormer
, and
P.
Kim
,
Phys. Rev. Lett.
99
,
246803
(
2007
).
65.
K.
Nomura
and
A. H.
MacDonald
,
Phys. Rev. Lett.
98
,
076602
(
2007
).
66.
E. H.
Hwang
,
S.
Adam
, and
S.
Das Sarma
,
Phys. Rev. Lett.
98
,
186806
(
2007
).
67.
V. M.
Galitski
,
S.
Adam
, and
S.
Das Sarma
,
Phys. Rev. B
76
,
24540
(
2007
).
68.
S.
Adam
,
E. H.
Hwang
,
E.
Rossi
, and
S.
Das Sarma
,
Solid State Commun.
149
,
1072
(
2009
).
69.
J.-H.
Chen
,
C.
Jang
,
S.
Adam
,
M. S.
Fuhrer
,
E. D.
Williams
, and
M.
Ishigami
,
Nature Phys.
4
,
377
(
2008
).
70.
J.-H.
Chen
,
C.
Jang
,
M.
Ishigami
,
S.
Xiao
,
W. G.
Cullen
,
E. D.
Williams
, and
M. S.
Fuhrer
,
Solid State Commun.
149
,
1080
(
2009
).
71.
L. A.
Ponomarenko
,
R.
Yang
,
T. M.
Mohiuddin
,
M. I.
Katsnelson
,
K. S.
Novoselov
,
S. V.
Morozov
,
A. A.
Zhukov
,
F.
Schedin
,
E. W.
Hill
, and
A. K.
Geim
,
Phys. Rev. Lett
102
,
206603
(
2009
).
72.
D. S.
Novikov
,
Appl. Phys. Lett.
91
,
102102
(
2007
).
73.
K.
Pi
,
K. M.
McCreary
,
W.
Bao
,
W.
Han
,
Y. F.
Chiang
,
Y.
Li
,
S. W.
Tsai
,
C. N.
Lau
, and
R. K.
Kawakami
,
Phys. Rev. B
80
,
075406
(
2009
).
74.
C.
Jang
,
S.
Adam
,
J.-H.
Chen
,
E. D.
Williams
,
S.
Das Sarma
, and
M. S.
Fuhrer
,
Phys. Rev. Lett.
101
,
146805
(
2008
).
75.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Phys. Rev. B
82
,
085436
(
2010
).
76.
E. V.
Gorbar
,
V. P.
Gusynin
,
V. A.
Miransky
, and
I. A.
Shovkovy
,
Phys. Rev. B
66
,
045108
(
2002
).
77.
H.
Kumazaki
and
D. S.
Hirashima
,
J. Phys. Soc. Jpn.
75
,
053707
(
2006
).
78.
V. P.
Gusynin
,
S. G.
Sharapov
, and
J. P.
Carbotte
,
Int. J. Mod. Phys. B
21
,
4611
(
2007
).
79.
S.
Adam
,
E. H.
Hwang
,
V. M.
Galitski
, and
S.
Das Sarma
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
18392
(
2007
).
80.
L. A.
Ponomarenko
,
A. K.
Geim
,
A. A.
Zhukov
,
R.
Jalil
,
S. V.
Morozov
,
K. S.
Novoselov
,
I. V.
Grigorieva
,
E. H.
Hill
,
V. V.
Cheianov
,
V. I.
Fal’ko
,
K.
Watanabe
,
T.
Taniguchi
, and
R. V.
Gorbachev
,
Nature Phys.
7
,
958
(
2011
).
81.
T.
Stauber
,
N. M. R.
Peres
, and
A. H.
Castro Neto
,
Phys. Rev. B
78
,
085418
(
2008
).
82.
A.
Bostwick
,
J. L.
McChesney
,
K. V.
Emtsev
,
T.
Seyller
,
K.
Horn
,
S. D.
Kevan
, and
E.
Rotenberg
,
Phys. Rev. Lett.
103
,
056404
(
2009
).
83.
I. M.
Lifshitz
,
S. A.
Gredeskul
, and
L. A.
Pastur
,
Introduction to the Theory of Disordered Systems
(
Nauka
,
Moscow
,
1982
).
84.
M. A.
Ivanov
,
V. M.
Loktev
, and
Y. G.
Pogorelov
,
Phys. Rep.
153
,
209
(
1987
).
85.
Y. V.
Skrypnyk
and
V. M.
Loktev
,
Phys. Rev. B
83
,
085421
(
2011
).
86.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
87.
J. H.
Bardarson
,
J.
Tworzydlo
,
P. W.
Brouwer
, and
C. W. J.
Beenakker
,
Phys. Rev. Lett.
99
,
106801
(
2007
).
88.
K.
Kechedzhi
,
E.
McCann
,
V. I.
Fal'ko
,
H.
Suzuura
,
T.
Ando
, and
B. L.
Altshuler
,
Eur. Phys. J. Special Topics
148
,
39
(
2007
).
89.
F. V.
Tikhonenko
,
A. A.
Kozikov
,
A. K.
Savchenko
, and
R. V.
Gorbachev
,
Phys. Rev. Lett.
103
,
226801
(
2009
).
90.
J.
Bang
and
K. J.
Chang
,
Phys. Rev. B
81
,
193412
(
2010
).
91.
J. H.
Bardarson
,
M. V.
Medvedyeva
,
J.
Tworzydlo
,
A. R.
Akhmerov
, and
C. W. J.
Beenakker
,
Phys. Rev. B
81
,
121414
(
2010
).
92.
E. R.
Mucciolo
and
C. H.
Lewenkopf
,
J. Phys. Condens. Matter
22
,
273201
(
2010
).
93.
N. M. R.
Peres
,
Rev. Mod. Phys.
82
,
2673
(
2010
).
94.
S.
Das Sarma
,
S.
Adam
,
E. H.
Hwang
, and
E.
Rossi
,
Rev. Mod. Phys.
83
,
407
(
2011
).
95.
V.
Ugarte
,
V.
Aji
, and
C. M.
Varma
,
Phys. Rev. B
84
,
165429
(
2011
).
96.
Z. H.
Ni
,
L. A.
Ponomarenko
,
R. R.
Nair
,
R.
Yang
,
S.
Anissimova
,
I. V.
Grigorieva
,
F.
Schedin
,
Z. X.
Shen
,
E. H.
Hill
,
K. S.
Novoselov
, and
A. K.
Geim
,
Nano Lett.
10
,
3868
(
2010
).
97.
F.
Amet
,
J. R.
Williams
,
K.
Watanabe
,
T.
Taniguchi
, and
D.
Goldhaber-Gordon
,
Phys. Rev. Lett.
110
,
216601
(
2013
).
98.
J.-H.
Chen
,
W. G.
Cullen
,
C.
Jang
,
M. S.
Fuhrer
, and
E. D.
Williams
,
Phys. Rev. Lett.
102
,
236805
(
2009
).
99.
F.
Withers
,
M.
Dubois
, and
A. K.
Savchenko
,
Phys. Rev. B
82
,
073403
(
2010
).
100.
S.
Nakaharai
,
T.
Iijima
,
S.
Ogawa
,
S.
Suzuki
,
S.-L.
Li
,
K.
Tsukagoshi
,
S.
Sato
, and
N.
Yokoyama
,
ACS Nano
7
,
5694
(
2013
).
101.
M. S.
Osofsky
,
S. C.
Hernandez
,
A.
Nath
,
V. D.
Wheeler
,
S. G.
Walton
,
C. M.
Krowne
, and
D. K.
Gaskill
,
Sci. Rep.
6
,
19939
(
2016
).
102.
E.
Zion
,
A.
Haran
,
A. V.
Butenko
,
L.
Wolfson
,
Y.
Kaganovskii
,
T.
Havdala
,
A.
Sharoni
,
D.
Naveh
,
V.
Richter
,
M.
Kaveh
,
E.
Kogan
, and
I.
Shlimak
,
Graphene
4
,
45
(
2015
).
103.
I. L.
Aleiner
and
K. B.
Efetov
,
Phys. Rev. Lett.
97
,
236801
(
2006
).
104.
P. M.
Ostrovsky
,
I. V.
Gornyi
, and
A. D.
Mirlin
,
Phys. Rev. Lett.
98
,
256801
(
2007
).
105.
G. G.
Naumis
,
Phys. Rev. B
76
,
153403
(
2007
).
106.
M.
Amini
,
S. A.
Jafari
, and
F.
Shahbazi
,
Europhysics Lett.
87
,
37002
(
2009
).
107.
A.
Lherbier
,
B.
Biel
,
Y.-M.
Niquet
, and
S.
Roche
,
Phys. Rev. Lett.
100
,
036803
(
2008
).
108.
Y.
Song
,
H.
Song
, and
S.
Feng
,
J. Phys. Condens. Matter
23
,
205501
(
2011
).
You do not currently have access to this content.