On the basis of the grand canonical Gibbs ensemble, using the virial theorem and the equations of motion for Green’s functions, it was shown that the thermodynamic functions of a one-component quantum gas are uniquely determined by the two-particle Green’s function outside the framework of perturbation theory. A thermodynamic self-consistency condition is formulated, which makes it possible to select approximate expressions for the two-particle Green’s function.

1.
S.
Giorgini
,
L. P.
Pitaevskii
, and
S.
Stringari
,
Rev. Mod. Phys.
80
,
1215
(
2008
).
2.
L. D.
Carr
,
D.
Demille
, R V. Krems, and J. Ye,
New J. Phys
11
,
055049
(
2009
).
3.
S.
Nascimbene
,
N.
Navon
,
F.
Chevy
, and
C.
Salomon
,
New. J. Phys
12
,
103026
(
2010
).
4.
A.
Adams
,
L. D.
Carr
,
Th.
Schäfer
,
P.
Steinberg
and
J. E.
Thomas
,
New J. Phys.
14
,
115009
(
2012
).
5.
L.
Salasnich
and
F.
Toigo
,
Phys. Rep.
640
,
1
(
2016
).
6.
A. A.
Abrikosov
,
L. P.
Gorkov
, and
I. E.
Dzyaloshinski
,
Methods of Quantum Field Theory in Statistical Physics
(
GIFML
,
Moscow
,
1962
).
7.
I.
Bloch
,
J.
Dalibard
, and
W.
Zwerger
,
Rev. Mod. Phys.
80
,
885
(
2008
).
8.
J. M.
Luttinger
and
J. C.
Ward
,
Phys. Rev.
118
,
1417
(
1960
).
9.
G.
Baym
and
L.P.
Kadano
,
Phys. Rev.
124
,
287
(
1961
).
10.
G.
Kotliar
,
S. Y.
Savrasov
,
K.
Haule
,
V. S.
Oudovenko
,
O.
Parcollet
, and
C. A.
Marianetti
,
Rev. Mod. Phys.
78
,
865
(
2006
).
11.
P. E.
Blöchl
,
T.
Pruschke
, and
M.
Potthoff
,
Phys. Rev. B
88
,
205139
(
2013
).
12.
V. B.
Bobrov
,
JETP Lett.
106
,
365
(
2017
) [JETP Lett. 106, 390 (2017)].
13.
D. N.
Zubarev
,
Nonequilibrium Statistical Thermodynamics
(
Nauka
,
Moscow
,
1971
).
14.
V. B.
Bobrov
,
S. A.
Trigger
, and
A.
Zagorodny
,
Phys. Rev. A
82
,
044105
(
2010
).
15.
D.
Pines
and
Ph.
Nozieres
,
The Theory of Quantum Liquids
(
W.A. Benjamin
,
New York
,
1966
).
16.
Yu. M.
Poluektov
,
J. Low Temp. Phys.
186
,
347
(
2017
).
17.
V. B.
Bobrov
,
A. G.
Zagorodny
, and
S. A.
Trigger
,
Fiz. Nizk. Temp.
43
,
420
(
2017
) [Low Temp. Phys. 43, 343 (2017)].
18.
R.
Balescu
,
Equilibrium and Nonequilibrium Statistical Mechanics
(
Mir
,
Moscow
,
1978
) [R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (
Wiley
,
New York, London
,
1975
)].
19.
D. N.
Zubarev
,
Adv. Phys. Sci.
71
,
71
(
1960
) [Sov. Phys. Usp. 3, 320 (1960)].
20.
V. D.
Ozrin
,
Theoret. Math. Phys.
4
,
66
(
1970
) [Theor. Math. Phys. 4, 678 (1970)].
21.
L. D.
Landau
and
E. M.
Lifshitz
,
Statistical Physics
(
Nauka
,
Moscow
,
1976
), Part 1.
You do not currently have access to this content.