The theoretical foundation of the method of acoustic emission (AE) was established in the pioneering studies by V. Natsik and his colleagues, which were published in the 1960s–1980s. The source functions corresponding to elementary dislocation mechanisms of plastic deformation and fracture were calculated based on continuum dislocation dynamics. The results remain up to date. Despite the existing experimental difficulties in verifying some of the basic formulations, these works clearly demonstrated the differences between potential sources of acoustic emission in materials. Based on these fundamental premises, statistical methods for recognizing the AE mechanisms, utilizing spectral and cluster analysis of AE time series, were recently proposed. This brief communication reviews theoretical models of AE sources, as well as some key experimental findings, to provide insights into the nature of the acoustic emission peak in the early stages of plastic deformation of metals. The methods for analyzing the AE signal and recognizing the AE sources are also discussed.

1.
I.
Keiser
,
Arch Eisenhuttenwesen
24
,
43
(
1953
).
2.
J. D.
Eshelby
,
Phis. Rev.
90
,
248
(
1953
).
3.
J. D.
Eshelby
,
Proc. Roy. Soc.
260
,
222
(
1962
).
4.
A. M.
Kosevich
,
ZhETF
42
,
152
(
1962
).
5.
A. M.
Kosevich
,
Ukrainian Journal of Physics
84
,
579
(
1964
).
6.
V. D.
Natsik
,
Pis’ma v ZhETF
8
,
324
(
1968
).
7.
V. D.
Natsik
,
A. N.
Burkanov
,
Fizika Tverdogo Tela
14
,
1289
(
1972
).
8.
V. D.
Natsik
,
K. A.
Chishko
,
Fizika Tverdogo Tela
20
,
1933
(
1978
).
9.
V. D.
Natsik
,
K. A.
Chishko
,
Fizika Tverdogo Tela
17
,
342
(
1975
).
10.
D. G.
Eitzen
and
H. N. G.
Wadley
,
J. Res. Natl. Bur. Stand.
89
,
75
(
1984
).
11.
C. B.
Scruby
,
H. N. G.
Wadley
, and
J. J.
Hill
,
J. Phys. D
16
,
1069
(
1983
).
12.
A.
Trochidis
and
B.
Polyzos
,
Phys. Status Solidi B
18
,
85
(
1994
).
13.
A.
Trochidis
and
B.
Polyzos
,
J. Mech. Phys. Solids
42
,
1933
(
1994
).
14.
B.
Polyzos
and
A.
Trochidis
,
Wave Motion.
21
,
343
(
1995
).
15.
A.
Trochidis
and
B.
Polyzos
,
J. Appl. Phys.
78
,
170
(
1995
).
16.
B.
Polyzos
,
E.
Douka
, and
A.
Trochidis
,
J. Appl. Phys.
89
,
2124
(
2001
).
17.
V. D.
Natsik
,
K. A.
Chishko
,
Fizika Tverdogo Tela
14
,
3126
(
1972
).
18.
N.
Kiesewetter
and
P.
Schiller
,
Scr. Met.
8
,
249
(
1974
).
19.
A. M.
Kosevich
,
V. S.
Boyko
,
Physics-Uspekhi
104
,
201
(
1971
).
20.
E.
Pomponi
,
A.
Vinogradov
, and
A.
Danyuk
,
Sign. Proc.
115
,
110
(
2015
).
21.
A.
Vinogradov
and
H.
Ueno
,
Patent Jpn.
4754651
, B (
2009
).
22.
R. M.
Fisher
and
L. S.
Lally
,
Canad. J. Phys.
45
,
1147
(
1967
).
23.
Yu. B.
Drobot
,
V. V.
Korchevsky
,
Flaw Detection
6
,
38
(
1985
).
24.
J. R.
Frederick
and
D. K.
Felbeck
, in:
Acoustic Emission, ASTM STP
505
, Baltimore (
1972
).
25.
T.
Imanaka
and
K.
Sano
,
Crystal Lattice Def.
4
,
57
(
1973
).
26.
C. B.
Scruby
and
H. N. G.
Wadley
,
Met. Science
15
,
599
(
1981
).
27.
D.
Rouby
and
P.
Fleischmann
,
Internal Friction and Ultrasonic Attenuation Solids
(
1977
), p.
811
.
28.
D. R.
James
and
S. N.
Carpenter
,
J. Appl. Phys.
42
,
4685
(
1971
).
29.
F. P.
Higgins
and
S. N.
Carpenter
Acta Metallurg.
26
,
133
(
1978
).
30.
V. S.
Boyko
,
V. F.
Kivshik
,
L. F.
Krivenko
,
ZhETF
78
,
797
(
1980
).
31.
B. H.
Schofield
, in:
Acoustic Emission, ASTM STP 505
,
American Society for Testing and Materials
(
1972
), p.
11
.
32.
R. T.
Sedgwick
,
J. Appl. Phys.
5
,
1728
(
1968
).
33.
H.
Ebener
and
W.
Schaarwachter
,
Acoustic Emission
,
Deutsche Gesellschaft fur Metallkunde
(
1980
), p.
81
.
34.
Z. I.
Bibik
,
Physics of Metals and Metallography
63
,
811
(
1987
).
35.
A.
Vinogradov
,
M.
Nadtochij
,
S.
Hashimoto
, and
S.
Miura
,
Rev. Metallurg.
92
,
215
(
1996
).
36.
M. A.
Krishtal
,
D. L.
Merson
,
A. V.
Katsman
,
M. A.
Vyboischik
,
Physics of Metals and Metallography
(
1988
)
66
. (
3
) C.
599
.
37.
M. A.
Krishtal
,
D. L.
Merson
,
M. A.
Vyboischik
.
Metals
6
,
84
(
1987
).
38.
V. P.
Alekhin
,
Physics of Strength and Plasticity of Materials’ Surface Layers
,
Nauka
,
Moscow
(
1983
).
39.
J. C.
Duke
and
R. A.
Kline
,
Scr. Vet.
9
,
855
(
1975
).
40.
M. A.
Krishtal
,
D. L.
Merson
,
V. P.
Alekhin
,
V. A.
Zaitsev
,
Physics of Metals and Metallography
63
,
1011
(
1987
).
41.
D. L.
Merson
,
The News of Russian Academy of Sciences. Series Physics
68
,
1477
(
2004
).
42.
D.
Merson
,
M.
Nadtochy
,
V.
Patlan
,
A.
Vinogradov
, and
K.
Kitagawa
,
Mater. Sci. Eng. A
234
,
587
(
1997
).
43.
A.
Vinogradov
,
M.
Nadtochiy
,
S.
Hashimoto
, and
S.
Miura
,
Mater. Trans. JIM
36
,
496
(
1995
).
44.
K.
Kitagawa
,
Y.
Kaneko
, and
A.
Vinogradov
,
Mater. Trans. JIM
38
,
607
(
1997
).
45.
A.
Vinogradov
,
S.
Hashimoto
, and
S.
Miura
,
Acta Mater.
44
,
2883
(
1996
).
46.
E.
Pomponi
and
A.
Vinogradov
,
Mech. Syst. Signal Proc.
40
,
791
(
2013
).
47.
A.
Vinogradov
,
D.
Orlov
,
A.
Danyuk
, and
Y.
Estrin
,
Mater. Sci. Eng. A
621
,
243
(
2015
).
48.
A.
Vinogradov
,
D.
Orlov
,
A.
Danyuk
, and
Y.
Estrin
,
Acta Mater.
61
(
6
) (
2013
)
2044
.
49.
A.
Vinogradov
,
A.
Lazarev
,
M.
Linderov
,
A.
Weidner
, and
H.
Biermann
,
Acta Mater.
61
,
2434
(
2013
).
50.
J. B.
MacQueen
,
Some Methods for Classification and Analysis of Multivariate Observations
,
University of California Press
(
1967
), p. 281.
51.
M.
Seleznev
and
A.
Vinogradov
,
Rev. Sci. Instrum.
85
,
076103
(
2014
).
52.
A.
Vinogradov
,
E.
Vasilev
,
M.
Linderov
, and
D.
Merson
,
Mater. Sci. Eng. A
676
,
351
(
2016
).
53.
A.
Vinogradov
,
E.
Vasilev
,
M.
Linderov
, and
D.
Merson
,
Metals
6
,
304
(
2016
).
54.
A.
Vinogradov
,
E.
Vasilev
,
D.
Merson
, and
Y.
Estrin
,
Eng. Mater.
19
,
1600092
(
2017
).
55.
A.
Vinogradov
,
E.
Vasilev
,
M.
Seleznev
,
K.
Mathis
,
D.
Orlov
, and
D.
Merson
,
Mater. Lett.
183
,
417
(
2016
).
56.
A.
Muller
,
C.
Segel
,
M.
Linderov
,
A.
Vinogradov
,
A.
Weidner
, and
H.
Biermann
,
Metall. Mater. Trans. A
47
,
59
(
2016
).
57.
R.
Takeda
,
Y.
Kaneko
,
D. L.
Merson
, and
A.
Vinogradov
,
Mater. Trans.
54
,
532
(
2013
).
58.
M.
Linderov
,
C.
Segel
,
A.
Weidner
,
H.
Biermann
, and
A.
Vinogradov
,
Mater. Sci. Eng. A
597
,
183
(
2014
).
You do not currently have access to this content.