We have recently shown that under certain cryogenic conditions heat can flow from a colder but constantly heated body to a hotter but constantly cooled body. Specifically, we have provided experimental evidence that heat flows through normal liquid and gaseous phases of 4He from the constantly heated, but cooler, bottom plate of a Rayleigh–Bénard convection cell to its hotter, but constantly cooled, top plate. Here we report results of a modified experiment, where the bottom normal liquid helium layer is replaced by superfluid 4He, providing, together with a superfluid film covering the entire cell interior, an effective thermal short-circuit. Applied heat input of order 1 W to the bottom plate results in simultaneous heating of the entire cell: this physical process can be viewed, at least approximately, as a series of subsequent equilibrium states, until upon reaching the superfluid transition the non-equilibrium processes described in our previous study [Proc. Nat. Acad. Sci. USA110, 8036 (2013)] are fully recovered.

1.
V. M.
Rizak
,
I. M.
Rizak
, and
E. Ya.
Rudavskii
,
Kriogenna fizika i tekhnika
,
Naukova Dumka
,
Kiev
(
2006
).
2.
D. R.
Tilley
and
J.
Tilley
,
Superfluidity and Superconductivity
,
Adam Hilger
(
1986
).
3.
R. J.
Donnelly
and
C. F.
Barenghi
,
J. Phys. Chem. Ref. Data
27
,
1217
(
1998
).
4.
R. D.
McCarty
, Thermophysical Properties of Helium-4 from 2 to 1500 K with Pressures to 1000 Atmospheres, Technical Note 631, National Bureau of Standards (1972); V.D. Arp and R.D. McCarty, The Properties of Critical Helium Gas, Tech. Rep., U. of Oregon (1998).
5.
B.
Saint-Michel
,
E.
Herbert
,
J.
Salort
,
C.
Baudet
,
M.
Bon Mardion
,
P.
Bonnay
,
M.
Bourgoin
,
B.
Castaing
,
L.
Chevillard
,
F.
Daviaud
,
P.
Diribarne
,
B.
Dubrulle
,
Y.
Gagne
,
M.
Gibert
,
A.
Girard
,
B.
Hebral
,
Th.
Lehner
,
B.
Rousset
, and
SHREK Collaboration
,
Phys. Fluids
26
,
125109
(
2014
).
6.
J. J.
Niemela
,
L.
Skrbek
,
K. R.
Sreenivasan
, and
R. J.
Donnelly
,
Nature
404
,
837
(
2000
).
7.
F.
Chilla
and
J.
Schumacher
,
Eur. Phys. J. E
35
,
58
(
2012
).
8.
P.
Urban
,
P.
Hanzelka
,
T.
Kralik
,
V.
Musilova
,
L.
Skrbek
, and
A.
Srnka
,
Rev. Sci. Instrum
.
81
,
085103
(
2010
).
9.
R. H.
Kraichnan
,
Phys. Fluids
5
,
1374
(
1962
).
10.
P.
Urban
,
V.
Musilova
, and
L.
Skrbek
,
Phys. Rev. Lett
.
107
,
014302
(
2011
).
11.
P.
Urban
,
P.
Hanzelka
,
T.
Kralik
,
V.
Musilova
,
A.
Srnka
, and
L.
Skrbek
,
Phys. Rev. Lett
.
109
,
154301
(
2012
).
12.
P.
Urban
,
P.
Hanzelka
,
V.
Musilova
,
T.
Kralik
,
M.
La Mantia
,
A.
Srnka
, and
L.
Skrbek
,
New J. Phys
.
16
,
053042
(
2014
).
13.
L.
Skrbek
and
P.
Urban
,
J. FluidMech
.
785
,
270
(
2015
).
14.
P.
Urban
,
D.
Schmoranzer
,
P.
Hanzelka
,
K. R.
Sreenivasan
, and
L.
Skrbek
,
Proc. Nat. Acad. Sci. USA
110
,
8036
(
2013
).
15.
J. J.
Niemela
,
Proc. Nat. Acad. Sci. USA
110
,
7969
(
2013
).
16.
Ge-on-GaAs
Film Sensors, TTR-G Model
,
MicroSensor
,
Kiev, Ukraine
.
17.
R.
Clausius
,
Poggendorfs Annalen der Physik und Chemie
79
,
368
and
500
(
1850
) [also in English: Philos. Mag. 2, 1 and 102 (1851)].
18.
R. V.
Smith
,
Cryogenics
9
,
11
(
1969
).
19.
S. W.
VanSciver
,
Helium Cryogenics, International Cryogenics Monograph Series
,
Plenum Press
,
New York
(
1986
).
You do not currently have access to this content.