The purpose of the present work was to investigate influence of different freeze-thawing protocols on structure and antioxidant properties of isolated proteins. In our experiments we have studied human serum albumin, human hemoglobin and cytochrome C derived from equine heart frozen down to 77.15 K with 1–2 deg/min and 300 deg/min rate with following thawing on a water bath at 293.15 K. Native proteins were assumed as a control. Influence of freeze-thawing protocols on protein structure was investigated using spectrophotometric and fluorescent assays. Antioxidant activities of isolated proteins were estimated by their ability to reduce ABTS+ radical. It has been established that unfolding derived from freeze-thawing exposure leads to protein antioxidant activity increasing while decreasing of such an activity may be connected with macromolecule aggregation. Character of freeze-thawing influence on antioxidant activity of proteins depends on molecule structure peculiarities and freezing protocols.

1.
E.
Bourdon
and
D.
Blache
,
Antioxid. Redox Signaling
3
,
293
(
2001
).
2.
M.
Roche
,
P.
Rondeau
,
N. R.
Singha
,
E.
Tarnus
, and
E.
Bourdon
,
FEBS Lett.
582
,
1783
(
2008
).
3.
C.
Aliaga
and
E. A.
Lissi
,
Can. J. Chem.
78
,
1052
(
2000
).
4.
E.
Cao
,
Y.
Chen
,
Z.
Cui
, and
P. R.
Foster
,
Biotechnol. Bioenerg.
82
,
684
(
2003
).
5.
Y. L.
Xiong
,
Protein Denaturation and Functionality Losses
(
Springer
,
USA
,
1997
).
6.
R.
Medina-Navarro
,
G.
Durán-Reyes
,
M.
Díaz-Flores
, and
C.
Vilar-Rojas
,
PLoS One
5
,
e8971
(
2010
).
7.
S. E.
Michael
,
Biochem. J.
82
,
212
(
1962
).
8.
R.
Re
,
N.
Pellegrini
,
A.
Proteggente
,
A.
Pannala
,
M.
Yang
, and
C.
Rice-Evans
,
Free Radical Biol. Med.
26
,
1231
(
1999
).
9.
J.
Lakowicz
and
R.
Joseph
,
Principles of Fluorescence Spectroscopy
(
Springer
,
USA
,
2006
).
10.
A.
Hawe
and
W.
Friess
,
Eur. J. Pharm. Biopharm.
64
,
316
(
2006
).
11.
E.
Bourdon
,
N.
Loreau
,
L.
Lagrost
, and
D.
Blache
,
Free Radical Res.
39
,
15
(
2005
).
12.
S.
Coristein
,
A.
Caspi
,
I.
Libman
,
E.
Katrich
,
H. T.
Lerner
, and
S.
Trakhtenberg
,
J. Agric. Food Chem.
52
,
5215
(
2004
).
13.
R. B.
Walker
and
J. D.
Everette
,
J. Agric. Food Chem.
57
,
1156
(
2009
).
14.
K.
Aoki
,
S.
Sakurai
,
M.
Murata
,
T.
Ito
,
H.
Terada
, and
K.
Hiramatsu
,
Colloid Polym. Sci.
262
,
470
(
1984
).
15.
R.
Wetzel
,
M.
Becker
,
J.
Behlke
,
H.
Billwitz
,
S.
Bohm
,
B.
Ebert
,
H.
Hamann
,
J.
Krumabiegel
, and
G.
Lassmann
,
Eur. J. Biochem.
104
,
469
(
1980
).
16.
D. A.
Vitturi1
,
C. W.
Sun
,
V. M.
Harper
,
B.
Thrash-Williams
,
N.
Cantu-Medellin
,
B. K.
Chacko
,
N.
Peng
,
Y.
Dai
,
J. M.
Wyss
,
T.
Townes
, and
R. P.
Patel
,
Free Radical Biol. Med.
55
,
119
(
2013
).
17.
C. K.
Chan
,
Y.
Hu
,
S.
Takahashi
,
D. L.
Rousseau
,
W. A.
Eaton
, and
J.
Hofrichte
,
Proc. Natl. Acad. Sci. U. S. A.
94
,
1779
(
1997
).
18.
S. M.
Singh
,
R. L.
Hutchings
, and
K. M. G.
Mallela
,
J. Pharm. Sci.
100
,
1679
(
2011
).
You do not currently have access to this content.