Motivated by new experimental observations we generalize the Landau-like approach to include the direct phase transition between isotropic liquid (I) and heliconical nematic liquid crystal (NTB) structure. We show that depending on the Landau expansion coefficients, our model allows either direct I–NTB transition, or the sequence of the phases I–N–NTB with the classical nematic liquid crystal (N) sandwiched between the isotropic liquid and heliconical nematic liquid crystal. Which of these two situations is realized depends on how strong is the first order phase transition from the isotropic liquid. If it is strong enough the system undergoes I–N–NTB sequence, and for the very weak first order phase transition I–NTB transformation occurs. Furthermore in the latter case the NTB structure can be biaxial heliconical nematic liquid crystal.

1.
S.
Chandrasekhar
,
Liquid Crystals
(
Cambridge University Press
,
New York
,
1992
).
2.
P. G.
de Gennes
and
J.
Prost
,
The Physics of Liquid Crystals
(
Clarendon Press
,
Oxford
,
1993
).
3.
M.
Kleman
and
O. D.
Lavrentovich
,
Soft Matter Physics: An Introduction
(
Springer
,
2003
).
4.
S. A.
Pikin
,
Structural Transformations in Liquid Crystals
(
Gordon and Breach
,
New York
,
1991
).
5.
L. M.
Blinov
and
V. G.
Chigrinov
,
Electrooptic Effects in Liquid Crystals
(
Springer
,
New York
,
1994
).
6.
P.
Oswald
and
P.
Pieranski
,
Nematic and Cholesteric Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments
, Liquid Crystals Book Series (
Taylor and Francis
,
London
,
2005
).
7.
Ya. B.
Zeldovich
,
ZhETF
67
,
2357
(
1971
).
8.
V. P.
Panov
,
M.
Nagaraj
, and
J. K.
Vij
,
Phys. Rev. Lett.
105
,
167801
(
2010
).
9.
M.
Cestari
,
S.
Diez-Berart
,
D. A.
Dunmur
,
A.
Ferrarini
,
M. R.
de la Fuente
,
D. J. B.
Jackson
,
D. O.
Lopez
,
G. R.
Luckhurst
,
M. A.
Perez-Jubindo
,
R. M.
Richardson
,
J.
Salud
,
B. A.
Timimi
, and
H.
Zimmermann
,
Phys. Rev. E
84
,
031704
(
2011
).
10.
V.
Borshch
,
Y.-K.
Kim
,
J.
Xiang
,
M.
Gao
,
A.
Jakli
,
V. P.
Panov
,
J. K.
Vij
,
C. T.
Imrie
,
M. G.
Tamba
,
G. H.
Mehl
, and
O. D.
Lavrentovich
,
Nat. Commun.
4
,
2635
(
2013
).
11.
D.
Chen
,
J. H.
Porada
,
J. B.
Hooper
,
A.
Klittnick
,
Y.
Shen
,
M. R.
Tuchband
,
E.
Korblova
,
D.
Bedrov
,
D. M.
Walba
,
M. A.
Glaser
,
J. E.
Maclennan
, and
N. A.
Clark
,
Proc. Natl. Acad. Sci. U.S.A.
110
,
15931
(
2013
).
12.
E.
Gorecka
,
N.
Vaupotic
,
A.
Zep
,
D.
Pociecha
,
J.
Yoshioka
,
J.
Yamamoto
, and
H.
Takezoe
,
Angew. Chem., Int. Ed.
54
,
10155
(
2015
).
13.
14.
V. L.
Lorman
and
B.
Mettout
,
Phys. Rev. E
69
,
061710
(
2004
).
15.
E. G.
Virga
,
Phys. Rev. E
89
,
052502
(
2014
).
16.
G.
Barbero
,
L. R.
Evangelista
,
M. P.
Rosseto
,
R. S.
Zola
, and
I.
Lelidis
,
Phys. Rev. E
92
,
030501
(
2015
).
17.
C.
Greco
and
A.
Ferrarini
,
Phys. Rev. Lett.
115
,
147801
(
2015
).
18.
M. A.
Osipov
and
G.
Pajak
,
Eur. Phys. J. E
39
,
45
(
2016
).
19.
L.
Longa
and
G.
Pajak
,
Phys. Rev. E
93
,
040701
(
2016
).
20.
N.
Vaupotič
,
S.
Curk
,
M. A.
Osipov
,
M.
Čepič
,
H.
Takezoe
, and
E.
Gorecka
,
Phys. Rev. E
93
,
022704
(
2016
).
21.
A. G.
Vanakaras
and
D. J.
Photinos
,
Soft Matter
12
,
2208
(
2016
).
22.
C.
Meyer
and
I.
Dozov
,
Soft Matter
12
,
574
(
2016
).
23.
E. I.
Kats
and
V. V.
Lebedev
,
JETP Lett.
100
,
110
(
2014
).
24.
R. J.
Mandle
and
J. W.
Goodby
,
Soft Matter
12
,
1436
(
2016
).
25.
A. A.
Dawood
,
M. C.
Grossel
,
G. R.
Luckhurst
,
R. M.
Richardson
,
B. A.
Timimi
,
N. J.
Wells
, and
Y. Z.
Yousif
,
Liq. Cryst.
43
,
2
(
2016
).
26.
W.
Tomczyk
,
G.
Pajak
, and
L.
Longa
,
Soft Matter
12
,
7445
(
2016
).
27.
V. L.
Pokrovskii
and
E. I.
Kats
,
Sov. Phys. JETP
46
,
405
(
1977
).
You do not currently have access to this content.