The sorption and desorption of hydrogen by mesoporous MCM-41 silicate material is studied at temperatures ranging from 6.8 to 290 K. It is found that a thermally activated mechanism with an estimated activation energy Ea ≈ 466 K predominates in the H2 sorption kinetics of an MCM-41 sample for temperatures of 60–290 K. For temperatures of 17–60 K the diffusion coefficient of H2 molecules in MCM-41 is almost entirely temperature independent, which is typical when a tunneling diffusion mechanism predominates over the thermally activated mechanism. Within the 8–17 K range, a change in the mobility of H2 molecules in the channels of MCM-41 is observed that appears to correspond to the formation of a monolayer (or its destruction during heating) and subsequent layers of hydrogen which have condensed on the inner surfaces of the channels. This process has an activation energy Em ≈ 21.2 K. At temperatures below 8 K the diffusion coefficients of H2 depend weakly on temperature. This presumably corresponds to a change in the mechanism for filling of the channels of MCM-41 from the layer-by-layer growth of film on the inner surfaces of the channels to capillary condensation of H2 molecules. These results are compared with previously obtained data on low-temperature sorption of hydrogen by bundles of carbon nanotubes.

1.
A. V.
Eletskii
,
Usp. Fiz. Nauk
174
,
1191
(
2004
).
2.
Yu. S.
Nechaev
,
Usp. Fiz. Nauk
176
,
581
(
2006
).
3.
A.
Züttel
,
P.
Sudan
,
P.
Mauron
,
T.
Kiyobayashi
,
C.
Emmenegger
, and
L.
Schlapbach
,
Int. J. Hydrogen Energy
27
,
203
(
2002
).
4.
T. R.
Prisk
,
M. S.
Bryan
, and
P. E.
Sokol
,
Phys. Chem. Chem. Phys.
16
,
17960
(
2014
).
5.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
R. M.
Basnukaeva
,
I. I.
Yaskovets
,
I. Yu.
Uvarova
, and
B. A.
Danilchenko
,
Fiz. Nizk. Temp.
40
,
317
(
2014
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
R. M.
Basnukaeva
,
I. I.
Yaskovets
,
I. Yu.
Uvarova
, and
B. A.
Danilchenko
, [
Low Temp. Phys.
40
,
246
(
2014
)].
6.
B. A.
Danilchenko
,
I. I.
Yaskovets
,
I. Y.
Uvarova
,
A. V.
Dolbin
,
V. B.
Esel'son
,
R. M.
Basnukaeva
, and
N. A.
Vinnikov
,
Appl. Phys. Lett.
104
,
173109
(
2014
).
7.
A. V.
Dolbin
,
M. V.
Khlystyuk
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
N. A.
Vinnikov
,
R. M.
Basnukaeva
, and
V. V.
Danchuk
,
Fiz. Nizk. Temp.
42
,
109
(
2016
)
A. V.
Dolbin
,
M. V.
Khlystyuk
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
N. A.
Vinnikov
,
R. M.
Basnukaeva
, and
V. V.
Danchuk
, [
Low Temp. Phys.
42
,
80
(
2016
)].
8.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
,
N. I.
Danilenko
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
35
,
613
(
2009
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
,
N. I.
Danilenko
, and
B.
Sundqvist
, [
Low Temp. Phys.
35
,
484
(
2009
)].
9.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
, and
S. N.
Popov
,
JETP Lett.
93
,
577
(
2011
).
10.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
, and
S. N.
Popov
,
Fiz. Nizk. Temp.
36
,
1352
(
2010
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
, and
S. N.
Popov
, [
Low Temp. Phys.
36
,
1091
(
2010
)].
11.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
,
B. A.
Danilchenko
, and
N. A.
Tripachko
,
Fiz. Nizk. Temp.
37
,
744
(
2011
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
S. N.
Popov
,
B. A.
Danilchenko
, and
N. A.
Tripachko
, [
Low Temp. Phys.
37
,
589
(
2011
)].
12.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
S. N.
Popov
,
N. A.
Vinnikov
, and
B.
Sundqvist
,
Fiz. Nizk. Temp.
35
,
1209
(
2009
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
S. N.
Popov
,
N. A.
Vinnikov
, and
B.
Sundqvist
[
Low Temp. Phys.
35
,
939
(
2009
)].
13.
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
I. I.
Yaskovets
,
I. Yu.
Uvarova
,
N. A.
Tripachko
, and
B. A.
Danilchenko
,
Fiz. Nizk. Temp.
39
,
790
(
2013
)
A. V.
Dolbin
,
V. B.
Esel'son
,
V. G.
Gavrilko
,
V. G.
Manzhelii
,
N. A.
Vinnikov
,
I. I.
Yaskovets
,
I. Yu.
Uvarova
,
N. A.
Tripachko
, and
B. A.
Danilchenko
, [
Low Temp. Phys.
39
,
610
(
2013
)].
14.
K. J.
Edler
,
P. A.
Reynolds
,
P. J.
Branton
,
F. R.
Trouw
, and
J. W.
White
,
J. Chem. Soc., Faraday Trans.
93
,
1667
(
1997
).
15.
N. Iz.
Taib
,
S.
Endud
, and
Md. N.
Katun
,
Int. J. Chem.
3
,
456
(
2011
).
16.
N.
Floquet
,
J. P.
Coulomb
,
P.
Llewellyn
,
G.
Andre
, and
R.
Kahn
,
Adsorption
11
,
679
(
2005
).
17.
H.
Ikegami
,
Y.
Yamato
,
T.
Okuno
,
J.
Taniguchi
,
N.
Wada
,
S.
Inagaki
, and
Y.
Fukushima
,
Phys. Rev. B
76
,
144503
(
2007
).
18.
X.
Zhao
,
B.
Xiao
,
A. J.
Fletcher
, and
K. M.
Thomas
,
J. Phys. Chem. B
109
,
8880
(
2005
).
19.
B.
Panella
,
M.
Hirscher
, and
S.
Roth
,
Carbon
43
,
2209
(
2005
).
You do not currently have access to this content.