Even though there is no long-range-ordered state of a superfluid in dimensions lower than the three-dimension (3D) such as bulk 4He liquid, superfluidity has been observed for flat 4He films in 2D and recently for nanotubes of 4He in 1D by the torsional oscillator method. In the 2D state, in addition to the superfluid below the 2D Kosterlitz–Thouless transition temperature TKT, superfluidity is also observed in a normal fluid state above TKT, which depends strongly on the measurement frequency and the system size. In the 1D state of the nanotubes, superfluidity is directly observed as a frequency shift in the torsional oscillator experiment. Some calculations suggest a superfluidity of a 1D Bose fluid with a finite length, where thermal excitations of 2π–phase winding play the main role for superfluid onset of each tube. Dynamics of the 1D superfluidity is also suggested by observing the dissipation in the torsional oscillator experiment.

1.
E. L.
Andronikashvili
,
Zh. Eksp. Teor. Fiz.
18
,
424
(
1948
).
2.
P. C.
Hohenberg
,
Phys. Rev.
158
,
383
(
1967
).
3.
I.
Rudnick
,
Phys. Rev. Lett.
40
,
1454
(
1978
).
4.
D. J.
Bishop
and
J. D.
Reppy
,
Phys. Rev. Lett.
40
,
1727
(
1978
).
5.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. C
6
,
1181
(
1973
).
6.
V.
Ambegaokar
,
B. I.
Halperin
,
D. R.
Nelson
, and
E. D.
Siggia
,
Phys. Rev. Lett.
40
,
783
(
1978
).
7.
M.
Hieda
,
K.
Matsuda
,
T.
Kato
,
T.
Matsushita
, and
N.
Wada
,
J. Phys. Soc. Jpn.
78
,
033604
(
2009
).
8.
K.
Shirahama
,
M.
Kubota
,
S.
Ogawa
,
N.
Wada
, and
T.
Watanabe
,
Phys. Rev. Lett.
64
,
1541
(
1990
).
9.
T.
Minoguchi
and
Y.
Nagaoka
,
Prog. Theor. Phys.
80
,
397
(
1988
).
10.
J.
Machta
and
R. A.
Guyer
,
Phys. Rev. Lett.
60
,
2054
(
1988
).
11.
S.
Inagaki
,
Y.
Fukushima
, and
K.
Kuroda
,
J. Chem. Soc., Chem. Commun.
08
,
680
(
1993
).
12.
N.
Wada
,
J.
Taniguchi
,
H.
Ikegami
,
S.
Inagaki
, and
Y.
Fukushima
,
Phys. Rev. Lett.
86
,
4322
(
2001
).
13.
N.
Wada
and
M. W.
Cole
,
J. Phys. Soc. Jpn.
77
,
111012
(
2008
).
14.
H.
Ikegami
,
Y.
Yamato
,
T.
Okuno
,
J.
Taniguchi
,
N.
Wada
,
S.
Inagaki
, and
Y.
Fukushima
,
Phys. Rev. B
76
,
144503
(
2007
).
15.
N.
Wada
,
Y.
Minato
,
T.
Matsushita
, and
M.
Hieda
,
J. Low Temp. Phys.
162
,
549
(
2011
).
16.
K.
Yamashita
and
D. S.
Hirashima
,
Phys. Rev. B
79
,
014501
(
2009
).
17.
R.
Toda
,
M.
Hieda
,
T.
Matsushita
,
N.
Wada
,
J.
Taniguchi
,
H.
Ikegami
,
S.
Inagaki
, and
Y.
Fukushima
,
Phys. Rev. Lett.
99
,
255301
(
2007
).
18.
T.
Oda
,
M.
Hieda
,
R.
Toda
,
T.
Matsushita
, and
N.
Wada
,
J. Low Temp. Phys.
158
,
262
(
2010
).
19.
N.
Wada
,
A.
Inoue
,
H.
Yano
, and
K.
Torii
,
Phys. Rev. B
52
,
1167
(
1995
), and the references therein.
20.
S.
Inagaki
,
S.
Guan
,
Y.
Fukushima
,
T.
Ohsuna
, and
O.
Terasaki
,
J. Am. Chem. Soc.
121
,
9611
(
1999
).
21.
N.
Wada
,
T.
Matsushita
,
M.
Hieda
, and
R.
Toda
,
J. Low Temp. Phys.
157
,
324
(
2009
).
22.
R.
Toda
,
J.
Taniguchi
,
R.
Asano
,
T.
Matsushita
, and
N.
Wada
,
J. Low Temp. Phys.
138
,
177
(
2005
).
23.
The figure shows recent result for 2.4 nm pores.
24.
To observe the superfluid shift of an isolated nanotube of the length L, whose third sound velocity is v3, by an oscillation method with angular velocity ω, ω must be much larger than v3/L. If v3 = 50 m/s and L = 300 nm, 103 Hz of the torsional oscillator frequency is much smaller than v3/L ≈ 1010 Hz. Both superfluid shifts of the nanotubes and the films on the grain surfaces are observed only below the 2D KT temperature.
25.
J.
Taniguchi
,
Y.
Aoki
, and
M.
Suzuki
,
Phys. Rev. B
82
,
104509
(
2010
).
26.
J.
Taniguchi
,
K.
Demura
, and
M.
Suzuki
,
J. Low Temp. Phys.
171
,
644
(
2013
).
27.
S.
Miyashita
,
H.
Nishimori
,
A.
Kuroda
, and
M.
Suzuki
,
Prog. Theor. Phys.
60
,
1669
(
1978
).
28.
T.
Matsubara
and
H.
Matsuda
,
Prog. Theor. Phys.
16
,
569
(
1956
).
29.
Superfluid is a potential flow whose velocity is given as vs=(/m)θ. Increase of the free energy by the flow of the superfluid density σs is described as Δf=(1/2)σsvs2, where vs is proportional to a phase difference Δθ. In the case of the XY spin lattice, the increase of the free energy due to the phase difference between two sides is described as Δf=(1/2)ϒ(Δθ)2, where ϒ is called as the helicity modulus. ϒ in the XY spin system is assumed to correspond to σs of the superfluid.
30.
K.
Yamashita
and
D. S.
Hirashima
, private communications.
31.
S. I.
Shevchenko
,
Fiz. Nizk. Temp.
14
,
1011
(
1988
)
S. I.
Shevchenko
, [
Sov. J. Low Temp. Phys.
14
,
553
(
1988
)].
32.
J.
Machta
and
R. A.
Guyer
,
J. Low Temp. Phys.
74
,
231
(
1989
).
33.
N. V.
Prokof'ev
and
B. V.
Svistunov
,
Phys. Rev. B
61
,
11282
(
2000
).
34.
A.
Del Maestro
and
I.
Affleck
,
Phys. Rev. B
82
,
060515
(
2010
).
35.
M.
Tsukamoto
and
M.
Tsubota
,
J. Low Temp. Phys.
162
,
603
(
2011
).
36.
A.
Kotani
,
K.
Yamashita
, and
D. S.
Hirashima
,
Phys. Rev. B
83
,
174515
(
2011
).
37.
T.
Eggel
,
M. A.
Cazalilla
, and
M.
Oshikawa
,
Phys. Rev. Lett.
107
,
275302
(
2011
).
38.
I.
Danshita
and
A.
Polkovnikov
,
Phys. Rev. A
85
,
023638
(
2012
).
You do not currently have access to this content.