Solid parahydrogen is an excellent matrix for matrix-isolation spectroscopy because of its high spectral resolution. Here we describe the rovibrational structure and nuclear spin conversion of CH4 embedded in parahydrogen crystals studied by infrared absorption spectroscopy. The vibration–rotation absorptions of CH4 exhibit time-dependent intensity changes at 4.8 K. These changes are interpreted to be a result of the I=1→I=2 nuclear spin conversion that accompanies the J=1→J=0 rotational relaxation. The half-lifetime of the upper J=1 rotational state is unchanged by the addition of up to 2% orthohydrogen molecules but decreases with more than 10% orthohydrogen molecules. The increase of the decay rate at higher orthohydrogen concentration indicates that the magnetic field gradient across CH4 due to the orthohydrogen molecules mixes the nuclear spin states, which accelerates the conversion.

1.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data
27
,
115
(
1998
).
2.
V. E.
Bondybey
and
V. A.
Apkarian
,
Chem. Phys.
189
,
137
(
1994
).
3.
G. N.
Lewis
,
D.
Lipkin
, and
T. T.
Magel
,
J. Am. Ceram. Soc.
63
,
3005
(
1941
).
4.
E.
Whittle
,
D. A.
Dows
, and
G. C.
Pimentel
,
J. Chem. Phys.
22
,
1943
(
1954
).
5.
M.
Okumura
,
M.-C.
Chan
, and
T.
Oka
,
Phys. Rev. Lett.
62
,
32
(
1989
).
6.
T.
Momose
,
D. P.
Weliky
, and
T.
Oka
,
J. Mol. Spectrosc.
153
,
760
(
1992
).
7.
T.
Oka
,
Annu. Rev. Phys. Chem.
44
,
299
(
1993
).
8.
D. P.
Weliky
,
K. E.
Kerr
,
T. J.
Byers
,
Y.
Zhang
,
T.
Momose
, and
T.
Oka
,
J. Chem. Phys.
105
,
4461
(
1996
).
9.
Y.
Zhang
,
T. J.
Byers
,
M.-C.
Chan
,
T.
Momose
,
K. E.
Kerr
,
D. P.
Weliky
, and
T.
Oka
,
Phys. Rev. B
68
,
218
(
1998
).
10.
M.-C. Chan, Ph.D. Thesis, The University of Chicago (1991).
11.
T.
Momose
and
T.
Shida
,
Bull. Chem. Soc. Jpn.
71
,
1
(
1998
).
12.
M. E.
Fajardo
and
S.
Tam
,
J. Chem. Phys.
108
,
4237
(
1998
).
13.
S.
Tam
and
M. E.
Fajardo
,
Rev. Sci. Instrum.
70
,
1926
(
1999
).
14.
H.
Katsuki
and
T.
Momose
,
Phys. Rev. Lett.
84
,
3286
(
2000
).
15.
T.
Momose
,
J. Chem. Phys.
107
,
7695
(
1997
).
16.
T.
Momose
,
M.
Miki
,
T.
Wakabayashi
,
T.
Shida
,
M.-C.
Chan
,
S. S.
Lee
, and
T.
Oka
,
J. Chem. Phys.
107
,
7707
(
1997
).
17.
T.
Momose
,
H.
Katsuki
,
H.
Hoshina
,
N.
Sogoshi
,
T.
Wakabayashi
, and
T.
Shida
,
J. Chem. Phys.
107
,
7717
(
1997
).
18.
H.
Hoshina
,
T.
Wakabayashi
,
T.
Momose
, and
T.
Shida
,
J. Chem. Phys.
110
,
5728
(
1999
).
19.
S.
Tam
and
M. E.
Fajardo
,
H.
Katsuki
,
H.
Hoshina
,
T.
Wakabayashi
, and
T.
Memose
,
J. Chem. Phys.
111
,
4191
(
1999
).
20.
E. B.
Wilson
Jr.
,
J. Chem. Phys.
3
,
276
(
1935
).
21.
A. W.
Maue
,
Ann. Phys. (Leipzig)
20
,
555
(
1937
).
22.
M.
Hepp
,
G.
Winnewisser
, and
K. M. T.
Yamada
,
J. Mol. Spectrosc.
164
,
311
(
1994
).
23.
R. F.
Curl
Jr.
,
J. V. V.
Kasper
, and
K. S.
Pitzer
,
J. Chem. Phys.
46
,
3220
(
1966
).
24.
P.-N.
Yi
,
I.
Ozier
, and
C. H.
Anderson
,
Phys. Rev.
165
,
92
(
1968
).
25.
I.
Ozier
,
P.-N.
Yi
,
A.
Khosla
, and
N. F.
Ramsay
,
Phys. Rev. Lett.
24
,
642
(
1970
).
26.
R. P. Wolf and W. M. Whitney, Low Temperature Physics, J. G. Daunt et al. (Eds.) (Plenum Press, Inc., New York, 1965).
27.
H. P.
Hopkins
Jr.
,
P. L.
Donoho
, and
K. S.
Pitzer
,
J. Chem. Phys.
47
,
864
(
1967
).
28.
K. P.
Wong
,
J. D.
Noble
,
M.
Bloom
, and
S.
Alexander
,
J. Magn. Reson.
1
,
55
(
1969
).
29.
P.
van Hecke
and
L.
van Gerven
,
Physica (Amsterdam)
68
,
359
(
1973
).
30.
G. J.
Vogt
and
K. S.
Pitzer
,
J. Chem. Thermodyn.
8
,
1011
(
1976
).
31.
J. E.
Piott
and
W. D.
McCormick
,
Can. J. Phys.
54
,
1784
(
1976
);
J. E.
Piott
and
W. D.
McCormick
,
Can. J. Phys.
54
,
1799
(
1976
).
32.
K. J.
Lushington
and
J. A.
Morrison
,
Can. J. Phys.
55
,
1580
(
1977
).
33.
J.
Higinbotham
,
B. M.
Wood
, and
R. F.
Code
,
Phys. Lett. A
66
,
237
(
1978
).
34.
S.
Buchman
,
D.
Candela
,
W. T.
Vetterling
, and
R. V.
Pound
,
Phys. Rev. B
26
,
1459
(
1982
).
35.
F. H.
Frayer
and
G. E.
Ewing
,
J. Chem. Phys.
46
,
1994
(
1967
).
36.
F. H.
Frayer
and
G. E.
Ewing
,
J. Chem. Phys.
48
,
781
(
1968
).
37.
G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, Spectra of Diatomic Molecules, Krieger Publishing Co., Malabar, Florida (1989).
38.
J. van Kranendonk, Solid Hydrogen. Theory of the Properties of SolidH2, HD, and D2 (Plenum Press, Inc., New York, 1983).
39.
T.
Miyazaki
,
K.
Yamamoto
, and
J.
Arai
,
Chem. Phys. Lett.
219
,
405
(
1994
).
40.
M. E.
Fajardo
,
S.
Tam
,
T. L.
Thompson
, and
M. E.
Cordonnier
,
Chem. Phys.
189
,
351
(
1994
).
41.
P. C. Souers, Hydrogen Properties for Fusion Energy, University of California Press, Berkeley (1986).
42.
L.
Pauling
,
Phys. Rev.
36
,
430
(
1930
).
43.
E. P. Wigner, Group Theory, Academic Press, New York (1959).
44.
J. T. Hougen, International Review of Science Physical Chemistry, Vol. 3, Ser. 2, Spectroscopy, p. 75, D. A. Ramsay (Ed.), Butterworths, London (1976).
45.
R. E.
Miller
and
J. C.
Decius
,
J. Chem. Phys.
59
,
4871
(
1973
).
46.
R. L.
Redington
and
D. E.
Milligan
,
J. Chem. Phys.
37
,
2162
(
1962
).
47.
R. L.
Redington
and
D. E.
Milligan
,
J. Chem. Phys.
39
,
1276
(
1963
).
48.
T. Momose and T. Oka (in preparation).
49.
Since the interaction between orthohydrogen and methane is much stronger than that between parahydrogen and methane, molecular parameters of methane with orthohydrogen next to it could be different from those of methane surrounded by only parahydrogen molecules. Therefore, the equilibrium value c(∞) is not necessarily be equal to 0.89 for higher orthohydrogen concentration. The c(∞) values determined by the least-squares fitting were 0.85 (10%), 0.82 (20%), 0.81 (30%), and 0.80 (75%).
50.
E.
Wigner
,
Z. Phys. Chem. Abt. B
23
,
28
(
1933
).
51.
K.
Motizuki
and
T.
Nagamiya
,
J. Phys. Soc. Jpn.
11
,
93
(
1956
).
52.
A. J.
Nijman
and
A. J.
Berlinsky
,
Can. J. Phys.
58
,
1049
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.