A brief review of the current state of the theory of fractional quantum Hall effect (FQHE) is given along with the assumption of possible connection between the experimentally observed features of the Hall resistance RH of a two-dimensional (2D) electron system in a strong quantizing magnetic field for a fractional filling factor of the lowest Landau level ν=q/(2n+1) with q⩾2, which cannot be described by the Laughlin wave function antisymmetric relative to pair transpositions, and the Cooper pairing of 2D electrons. It is assumed that the electron–electron attraction essential for Cooper pairing can be due to the interaction of 2D electrons with the surface acoustic waves (2D phonons) and the surface 2D plasmons localized near the crystal interfaces (heterojunctions) in the vicinity of inversion layers in the metal–insulator–semiconductor (MIS) structures and heterostructures. The coexistence of coupled electron pairs and unpaired electrons under the FQHE conditions must lead to peculiarities of RH for values of ν described by the Halperin relation following from the symmetry properties of the “mixed” wave function of pairs (bosons) and electrons (fermions). This relation makes it possible in principle to describe all experimental data on FQHE. The summation of “ladder” diagrams diverging according to a power law for T→0 leads to a Bethe–Salpeter-type equation for the vertex part of the electron–electron interaction for a 2D system in a quantizing magnetic field taking into account electron–electron and electron–hole pairing in the Cooper and zero-sound channels. This equation is used to calculate the critical temperature Tc of the phase transition to the state with coupled Cooper pairs and to prove that the value of Tc in the ultra-quantum limit is independent of the effective mass of electrons, i.e., on the 2D density of states. The phase diagram of the 2D system is constructed for the variable electron concentration and magnetic field. It is shown that the region of Cooper pairing of 2D electrons in the case of strong attraction almost coincides with the FQHE region for ν<1, while the region of electron-hole pairing with the formation of charge-density waves (CDW) is expelled to the region with ν>1, which is in accord with the experimental data concerning the CDW-induced features of the longitudinal resistance Rxx for ν=(2n+1)/2 with n⩾2.

1.
D. C.
Tsui
,
H. L.
Störmer
, and
A. C.
Gossard
,
Phys. Rev. Lett.
48
,
1559
(
1982
).
2.
R. B.
Laughlin
,
Phys. Rev. Lett.
50
,
1395
(
1983
);
R. B.
Laughlin
,
Science
242
,
525
(
1988
).
3.
R.
Justrow
,
Phys. Rev.
98
,
1479
(
1955
).
4.
Yu. A.
Bychkov
,
S. V.
Iordanskii
, and
G. M.
Eliashberg
, Pis’ma Zh. Éksp. Teor. Fiz. 33, 152 (1981) [
JETP Lett.
33
,
143
(
1981
)].
5.
H. L.
Störmer
,
A.
Chang
, and
D. C.
Tsui
et al.,
Phys. Rev. Lett.
50
,
1953
(
1983
).
6.
E. F.
Mendez
,
M.
Heiblum
,
L. L.
Chang
, and
L.
Esaki
,
Phys. Rev. B
28
,
4886
(
1983
).
7.
A. M.
Chang
,
P.
Berglund
, and
D. C.
Tsui
et al.,
Phys. Rev. Lett.
53
,
997
(
1984
).
8.
B. I.
Halperin
,
Helv. Phys. Acta
56
,
75
(
1983
).
9.
R.
Mort
and
B. I.
Halperin
,
Phys. Rev. B
33
,
2221
(
1986
).
10.
B. I.
Halperin
,
P. A.
Lee
, and
N.
Read
,
Phys. Rev. B
47
,
7312
(
1993
).
11.
F. Wilczek, Fractional Statistics and Anyon Superconductivity, World Scientific, Singapore (1990).
12.
A. Lerda, Anyons, Springer-Verlag (1992).
13.
J. G.
Bednorz
and
K. A.
Müller
,
Z. Phys. B: Condens. Matter
84
,
189
(
1986
).
14.
D. Nelson, M. Wittinham, and T. George (Eds.), High-Temperature Superconductors (Russian translation), MIR, Moscow (1988).
15.
J. K.
Jain
,
Phys. Rev. Lett.
63
,
199
(
1989
).
16.
S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi, Phys. Rev. B 47 (1993).
17.
K.
von Klitzing
,
C.
Dorda
, and
M.
Pepper
,
Phys. Rev. Lett.
45
,
494
(
1980
).
18.
A. L.
Kasatkin
and
E. A.
Pashitskii
,
Ukr. Fiz. Zh.
22
,
467
(
1977
).
19.
T.
Maniv
,
A. I.
Rom
,
I. D.
Vagner
, and
P.
Wyder
,
Phys. Rev. B
46
,
8360
(
1992
).
20.
A. R.
Rajagopal
and
R.
Vasudevan
,
Phys. Lett.
20
,
585
(
1966
);
A. R.
Rajagopal
and
R.
Vasudevan
,
Phys. Lett.
23
,
539
(
1966
).
21.
L.
Gunter
and
L. W.
Gruenberg
,
Solid State Commun.
4
,
329
(
1966
).
22.
L. W.
Gruenberg
and
L.
Gunter
,
Phys. Rev.
176
,
606
(
1968
).
23.
L. P.
Gor’kov
and
A. G.
Lebed’
,
J. Phys. (Paris)
43
,
L433
(
1984
).
24.
A. G.
Lebed’
, Pis’ma Zh. Éksp. Teor. Fiz. 44, 89 (1986) [
JETP Lett.
44
,
114
(
1986
)].
25.
N.
Dupuis
,
G.
Montambaux
, and
C. A. R.
Sa de Melo
,
Phys. Rev. Lett.
70
,
2613
(
1993
).
26.
J. E.
Grabner
and
M.
Robbins
,
Phys. Rev. Lett.
36
,
422
(
1976
).
27.
F. D. M.
Haldane
and
E.
Rezayi
,
Phys. Rev. Lett.
60
,
956
(
1988
);
F. D. M.
Haldane
and
E.
Rezayi
,
Phys. Rev. Lett.
61
,
1985
(
1988
).
28.
D.
Simonyan
,
S. V.
Kravchenko
,
M. P.
Sarachik
, and
V. M.
Pudalov
,
Phys. Rev. Lett.
79
,
2304
(
1997
).
29.
P.
Phillips
,
S.
Knysh
, and
D.
Davidovich
,
Nature
395
,
253
(
1998
).
30.
T. Ando, A. Fowler, and F. Stern, Electronic Properties of Two-dimensional Systems, American Physical Society, New York (1982).
31.
E. A.
Pashitskii
, Éksp. Teor. Fiz. 56, 662 (1969) [
Sov. Phys. JETP
29
,
362
(
1969
)].
32.
H.
Fukuyama
,
P. M.
Platzman
, and
P. W.
Anderson
,
Phys. Rev. B
19
,
5211
(
1979
).
33.
P. M.
Lilly
,
K. B.
Cooper
,
J. P.
Eisenstein
et al., Preprint cond-mat/9808227.
34.
A. A.
Koulakov
,
M. M.
Fogler
, and
B. I.
Shklovskii
,
Phys. Rev. Lett.
76
,
499
(
1996
).
35.
R.
Moessner
and
J. T.
Chalker
,
Phys. Rev. B
54
,
5006
(
1996
).
36.
M. M.
Fogler
and
A. A.
Koulakov
,
Phys. Rev. B
55
,
9326
(
1997
).
37.
P. de Gennes, Superconductivity of Metals and Alloys, New York (1966).
38.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics [in Russian], Nauka, Moscow (1974).
39.
G.
Kido
,
K.
Komorita
,
H.
Katayama-Yoshida
, and
T.
Takahashi
,
J. Phys. Chem. Solids
52
,
465
(
1991
).
40.
C. M.
Fowler
,
B. I.
Freeman
,
W. L.
Hults
et al.,
Phys. Rev. Lett.
68
,
534
(
1992
).
41.
J. R. Schrieffer, The Theory of Superconductivity, Benjamin, New York, 1964.
42.
V. F. Gantmakher and I. B. Levinson, Scattering of Charge Carriers in Metals and Semiconductors [in Russian], Nauka, Moscow (1984).
43.
E. I.
Rashba
and
V. B.
Timofeev
, Fiz. Tekh. Poluprovodn. (St. Petersburg) 20, 977 (1986) [
Sov. Phys. Semiconductors
20
,
617
(
1986
)].
44.
M. Cardona, H. Grimsditsch, and D. Olego, in Light Scattering in Solids (edited by J. L. Birman, H. Z. Cummins, and K. K. Rebane), Plenum Press, New York (1979).
45.
P.
Vogl
and
W.
Potz
,
Phys. Rev. B
24
,
2025
(
1981
).
46.
L. D. Landau and E. M. Lifshitz, Theory of Elasticity [in Russian], Nauka, Moscow (1965).
47.
A. Oliner (Ed.), Acoustic Surface Waves Springer, Heidelberg (1978).
48.
M. Cohen, H. Gladstone, M. Jensen, and J. Schrieffer, in Superconductivity of Semiconductors and Transition Metals, (Ed. by R. Parks), Marcel–Dekker, New York (1969).
49.
E. A.
Pashitskii
and
A. S.
Shpigel
,
Ukr. Fiz. Zh.
23
,
669
(
1978
).
50.
A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics [in Russian], Fiz.-mat. Lit., Moscow (1962).
51.
E. M. Lifshitz and L. P. Pitaevskii, Relativistic Quantum Theory [in Russian], Part 2, Nauka, Moscow (1971).
52.
Yu. A.
Bychkov
and
E. I.
Rashba
, Pis’ma Zh. Éskp. Teor. Fiz. 38, 195 (1983) [
JETP Lett.
38
,
229
(
1983
)].
53.
Y.
Kuramoto
,
Phys. Rev. Lett.
50
,
866
(
1983
).
54.
E. E.
Mendez
,
L. L.
Chang
, and
C. A.
Chang
et al.,
Surf. Sci.
142
,
215
(
1984
).
55.
Yu. A.
Bychkov
,
L. P.
Gor’kov
, and
I. E.
Dzyaloshinskii
, Zh. Éksp. Teor. Fiz. 50, 738 (1966) [
Sov. Phys. JETP
23
,
489
(
1966
)].
56.
I. E.
Dzyaloshinskii
and
A. I.
Larkin
, Zh. Éksp. Teor. Fiz. 61, 791 (1971) [
Sov. Phys. JETP
34
,
422
(
1971
)].
57.
L. P.
Gor’kov
,
and
I. E.
Dzyaloshinskii
, Zh. Éksp. Teor. Fiz. 67, 397 (1974) [
Sov. Phys. JETP
40
,
198
(
1974
)].
58.
A. T.
Zheleznyak
,
V. M.
Yakovenko
, and
I. E.
Dzyaloshinskii
,
Phys. Rev. B
55
,
3200
(
1997
).
59.
T. Chakraborty and P. Pietilainen, The Quantum Hall Effects: Integral and Fractional, Springer-Verlag (1995).
60.
S. Das Sarma and Aron Pinczuk (Eds), Perspective in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Superconductor Structures, J. Wiley and Sons (1996).
61.
G.
Moore
and
N.
Read
,
Nucl. Phys. B
360
,
362
(
1991
).
62.
M.
Nakayama
,
M.
Ishida
, and
N.
Sano
,
Phys. Rev. B
38
,
6348
(
1988
).
63.
Z. V.
Popovich
,
M.
Cardona
,
E.
Richter
et al.,
Phys. Rev. B
41
,
5904
(
1990
).
64.
C.
Trallero-Ginev
,
F.
Garcia-Moliner
,
V. R.
Velasco
, and
M.
Cardona
,
Phys. Rev. B
45
,
11944
(
1992
).
65.
G.
Ebert
,
K. V.
Klitzing
,
C.
Probst
, and
K.
Ploog
,
Solid State Commun.
44
,
95
(
1982
).
66.
R. B.
Laughlin
,
Phys. Rev. B
23
,
5632
(
1981
).
67.
B. I.
Halperin
,
Phys. Rev. B
25
,
2185
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.