A large molecular machine called the mitotic spindle is responsible for accurate chromosome segregation in eukaryotic cells. The spindle consists of protein filaments known as microtubules and microtubule-associated proteins such as motors and crosslinkers, which help impart its organization. In the case of the fission yeast S. pombe, these form a single bundle inside the nucleus. During spindle elongation, sliding by motor proteins provides an internal source of extensile forces, which are resisted by the compressive forces of the nuclear envelope. To probe the sources of this force balance, we cut the spindle using focused laser light at various stages of spindle elongation. We find that the spindle pole bodies collapse toward each other post-ablation. While this basic behavior has been previously observed, many questions remain about the timing, mechanics, and molecular requirements of this phenomenon. Here, we quantify the time scale of the relaxation and probe its underlying mechanism. We demonstrate that viscoelastic relaxation of the nuclear envelope cannot explain this phenomenon and provide evidence of active forces as the underlying mechanism.

1.
J. M.
Mitchison
, “Chapter 7 physiological and cytological methods for schizosaccharomyces pombe,” in
Methods in Cell Biology
, Vol. 4, edited by D. M. Prescott (Academic Press, 1970) pp. 131–165.
2.
I. M.
Hagan
and
J. S.
Hyams
,
J. Cell Sci.
89
(Pt 3),
343
357
(
1988
).
3.
K.
Nabeshima
,
T.
Nakagawa
,
A. F.
Straight
,
A.
Murray
,
Y.
Chikashige
,
Y. M.
Yamashita
,
Y.
Hiraoka
, and
M.
Yanagida
,
Molecular Biology of the Cell
9
,
3211
3225
(
1998
).
4.
R.
Ding
,
K. L.
McDonald
, and
J. R.
McIntosh
,
Journal of Cell Biology
120
,
141
151
(1993).
5.
K.
Tanaka
and
T.
Kanbe
,
Cell Sci.
80
,
253
268
(
1986
).
6.
H.
Masuda
,
T.
Hirano
,
M.
Yanagida
, and
W. Z.
Cande
,
The Journal of Cell Biology
110
,
417
425
(
1990
).
7.
A.
Mallavarapu
,
K.
Sawin
, and
T.
Mitchison
,
Current Biology
9
,
1423
1428
(
1999
).
8.
A.
Khodjakov
,
R. W.
Cole
, and
C. L.
Rieder
,
Cell Motility and the Cytoskeleton
38
(4),
311
317
(
1997
)
9.
A.
Khodjakov
,
S.
La Terra
, and
F.
Chang
,
Current Biology
14
,
1330
1340
(
2004
).
10.
I. M.
Tolíc-Nørrelykke
,
L.
Sacconi
,
G.
Thon
, and
F. S.
Pavone
,
Current Biology
14
,
1181
1186
(
2004
).
11.
S. L.
Forsburg
and
N.
Rhind
,
Yeast
(
Chichester
,
England
)
23
,
173
183
(
2006
).
12.
J.-Q.
Wu
,
J. R.
Kuhn
,
D. R.
Kovar
, and
T. D.
Pollard
,
Developmental Cell
5
,
723
734
(
2003
).
13.
M. W.
Elting
,
M.
Prakash
,
D. B.
Udy
, and
S.
Dumont
,
Current Biology
27
,
2112
2122
.e5 (
2017
).
14.
M. A.
Begley
,
A. L.
Solon
,
E. M.
Davis
,
M. G.
Sherrill
,
R.
Ohi
, and
M. W.
Elting
, preprint bioRxiv, 2020.05.19.104661 (
2020
).
15.
M. W.
Elting
,
C. L.
Hueschen
,
D. B.
Udy
, and
S.
Dumont
,
Journal of Cell Biology
206
,
245
256
(
2014
).
16.
S.
Santaguida
and
A.
Amon
,
Nature
Reviews
.
Molecular Cell Biology
16
,
473
485
(
2015
).
17.
V. P.
Singh
and
J. L.
Gerton
,
Current Opinion in Cell Biology Differentiation and Disease
37
,
9
17
(
2015
).
This content is only available via PDF.