This paper analyzes the electricity production potential and economic viability of grid-connected wind/photovoltaic (PV) energy systems at two coastal cities, Yanbu and Dhahran in Saudi Arabia. First, wind energy is assessed based on the hourly wind speed observation data recorded over the entire year 2013 in the selected locations. Electricity generation potential is estimated using two wind turbines: Vestas V82 and V90 models. The results indicate that both locations have sufficient wind resources for wind turbine operation. Strong wind resources are more common at Dhahran than at Yanbu with wind speeds above 3.5 m/s, accounting for 60.12% of the wind data at Dhahran, which is higher than 51.2% of Yanbu. Grid-connected hybrid systems using Vestas V90 wind turbines had the highest net present cost (NPC) compared with other configurations. The inclusion of battery storage units slightly increases the NPC. Surprisingly, systems with the highest NPC produced the least electricity. In contrast, cheaper V82-based systems had the lowest NPC and levelized cost of energy and produced the most electricity. Hence, a grid-connected wind/PV system using V82 turbines is most economically viable. Incorporating a small battery storage unit in the systems minimizes capacity shortages and improves reliability at minimal extra cost. Using different wind turbines with a lower cut-in speed of 3 m/s could increase the electricity production, as 9.1% and 10.3% of wind observations at Yanbu and Dhahran, respectively, had a wind speed of 3 m/s.

1.
A. B.
Stambouli
,
Z.
Khiat
,
S.
Flazi
, and
Y.
Kitamura
, “
A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues
,”
Renewable Sustainable Energy Rev.
16
(
7
),
4445
4460
(
2012
).
2.
D. O.
Akinyele
and
R. K.
Rayudu
, “
Community-based hybrid electricity supply system: A practical and comparative approach
,”
Appl. Energy
171
,
608
628
(
2016
).
3.
E. D.
Giannoulis
and
D. a.
Haralambopoulos
, “
Distributed generation in an isolated grid: Methodology of case study for Lesvos—Greece
,”
Appl. Energy
88
(
7
),
2530
2540
(Jul.
2011
).
4.
EIA, see http://www.eia.gov for Overview Data for Saudi Arabia (last accessed 12 January
2014
).
5.
M. A. M.
Ramli
,
S.
Twaha
, and
Z.
Al-Hamouz
, “
Analyzing the potential and progress of distributed generation applications in Saudi Arabia: The case of solar and wind resources
,”
Renewable Sustainable Energy Rev.
70
(
2016
),
287
297
(
2017
).
6.
S. M.
Rahman
and
a. N.
Khondaker
, “
Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
16
(
5
),
2446
2460
(
2012
).
7.
V.
Tola
and
A.
Pettinau
, “
Power generation plants with carbon capture and storage: A techno-economic comparison between coal combustion and gasification technologies
,”
Appl. Energy
113
,
1461
1474
(
2014
).
8.
J.-H.
Wee
, “
A review on carbon dioxide capture and storage technology using coal fly ash
,”
Appl. Energy
106
,
143
151
(
2013
).
9.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
, “
Renewable energy resources: Current status, future prospects and their enabling technology
,”
Renewable Sustainable Energy Rev.
39
,
748
764
(
2014
).
10.
A.
Hepbasli
and
Z.
Alsuhaibani
, “
A key review on present status and future directions of solar energy studies and applications in Saudi Arabia
,”
Renewable Sustainable Energy Rev.
15
(
9
),
5021
5050
(Dec.
2011
).
11.
C.
Wang
,
S. S.
Member
,
M. H.
Nehrir
, and
S. S.
Member
, “
Analytical approaches for optimal placement of distributed generation sources in power systems
,”
IEEE Trans. Power Syst.
19
(
4
),
2068
2076
(
2004
).
12.
S. J.
Mirazimi
,
M.
Nematollahi
,
M. H.
Ashourian
, and
S.
Mirahmadi
, “
Reconfiguration and DG placement considering critical system condition
,” in
IEEE 7th International Power Engineering and Optimization Conference (PEOCO)
(
2013
), pp.
676
679
.
13.
S.
Bhattacharjee
and
S.
Acharya
, “
Performative analysis of an eccentric solar-wind combined system for steady power yield
,”
Energy Convers. Manage.
108
,
219
232
(
2016
).
14.
K. J.
Chua
,
W. M.
Yang
,
S. S.
Er
, and
C.
Ho
, “
Sustainable energy systems for a remote island community
,”
Appl. Energy
113
,
1752
1763
(
2014
).
15.
S.
Sinha
and
S. S.
Chandel
, “
Review of recent trends in optimization techniques for solar photovoltaic-wind based hybrid energy systems
,”
Renewable Sustainable Energy Rev.
50
,
755
769
(
2015
).
16.
S.
Sinha
and
S. S.
Chandel
, “
Improving the reliability of photovoltaic-based hybrid power system with battery storage in low wind locations
,”
Sustainable Energy Technol. Assess.
19
,
146
159
(
2017
).
17.
M.
Qolipour
,
A.
Mostafaeipour
,
S.
Shamshirband
,
O.
Alavi
,
H.
Goudarzi
, and
D.
Petković
, “
Evaluation of wind power generation potential using a three hybrid approach for households in Ardebil Province, Iran
,”
Energy Convers. Manage.
118
,
295
305
(
2016
).
18.
A.
Hiendro
,
R.
Kurnianto
,
M.
Rajagukguk
,
Y. M.
Simanjuntak
, and
Junaidi
, “
Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia
,”
Energy
59
,
652
657
(
2013
).
19.
G.
Rohani
and
M.
Nour
, “
Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates
,”
Energy
64
,
828
841
(
2014
).
20.
G.
Bekele
and
G.
Tadesse
, “
Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia
,”
Appl. Energy
97
,
5
15
(
2012
).
21.
O.
Hafez
and
K.
Bhattacharya
, “
Optimal planning and design of a renewable energy based supply system for microgrids
,”
Renewable Energy
45
,
7
15
(
2012
).
22.
G.
Bekele
and
B.
Palm
, “
Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia
,”
Appl. Energy
87
(
2
),
487
495
(
2010
).
23.
F.
Baghdadi
,
K.
Mohammedi
,
S.
Diaf
, and
O.
Behar
, “
Feasibility study and energy conversion analysis of stand-alone hybrid renewable energy system
,”
Energy Convers. Manage.
105
,
471
479
(
2015
).
24.
Y.
Himri
,
A. S.
Malik
,
A.
Boudghene Stambouli
,
S.
Himri
, and
B.
Draoui
, “
Review and use of the Algerian renewable energy for sustainable development
,”
Renewable Sustainable Energy Rev.
13
(
6–7
),
1584
1591
(
2009
).
25.
S.
Twaha
,
M. H.
Idris
,
M.
Anwari
, and
A.
Khairuddin
, “
Applying grid-connected photovoltaic system as alternative source of electricity to supplement hydro power instead of using diesel in Uganda
,”
Energy
37
(
1
),
185
194
(
2012
).
26.
S.
Twaha
,
M. A. M.
Ramli
,
P. M.
Murphy
,
M. U.
Mukhtiar
, and
H. K.
Nsamba
, “
Renewable based distributed generation in Uganda: Resource potential and status of exploitation
,”
Renewable Sustainable Energy Rev.
57
,
786
798
(
2016
).
27.
L. M.
Al-Hadhrami
, “
Performance evaluation of small wind turbines for off grid applications in Saudi Arabia
,”
Energy Convers. Manage.
81
,
19
29
(
2014
).
28.
M. A.
Baseer
,
J. P.
Meyer
,
M. M.
Alam
, and
S.
Rehman
, “
Wind speed and power characteristics for Jubail industrial city, Saudi Arabia
,”
Renewable Sustainable. Energy Rev.
52
,
1193
1204
(
2015
).
29.
S.
Rehman
and
A. Z.
Sahin
, “
Wind power utilization for water pumping using small wind turbines in Saudi Arabia: A techno-economical review
,”
Renewable Sustainable Energy Rev.
16
(
7
),
4470
4478
(
2012
).
30.
S.
Rehman
,
I. M.
El-amin
,
F.
Ahmad
,
S. M.
Shaahid
,
A. M.
Al-shehri
, and
J. M.
Bakhashwain
, “
Wind power resource assessment for Rafha, Saudi Arabia
,”
Renewable Sustainable Energy Rev.
11
,
937
950
(
2007
).
31.
H.
El Khashab
and
M.
Al Ghamedi
, “
Comparison between hybrid renewable energy systems in Saudi Arabia
,”
J. Electr. Syst. Inf. Technol.
2
(
1
),
111
119
(
2015
).
32.
S.
Rehman
and
L. M.
Al-Hadhrami
, “
Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia
,”
Energy
35
(
12
),
4986
4995
(
2010
).
33.
M. A.
Mohandes
, “
Modeling global solar radiation using particle swarm optimization (PSO)
,”
Sol. Energy
86
(
11
),
3137
3145
(
2012
).
34.
M.
Benghanem
and
A.
Mellit
, “
Radial Basis Function Network-based prediction of global solar radiation data: Application for sizing of a stand-alone photovoltaic system at Al-Madinah, Saudi Arabia
,”
Energy
35
(
9
),
3751
3762
(
2010
).
35.
M. A. M.
Ramli
,
S.
Twaha
, and
Y. A.
Al-Turki
, “
Investigating the performance of support vector machine and artificial neural networks in predicting solar radiation on a tilted surface: Saudi Arabia case study
,”
Energy Convers. Manage.
105
,
442
452
(
2015
).
36.
A.
Kaabeche
,
M.
Belhamel
, and
R.
Ibtiouen
, “
Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system
,”
Energy
36
(
2
),
1214
1222
(
2011
).
38.
S.
Rehman
and
N. M.
Al-abbadi
, “
Wind shear coefficients and energy yield for Dhahran, Saudi Arabia
,”
Renewable Energy
32
,
738
749
(
2007
).
39.
Enviroware, see http://www.enviroware.com/portfolio/windrose-pro3/ for WindRose PRO3 Overview (last accessed 01 October
2014
).
40.
D. L.
Elliott
,
C. G.
Holladay
,
W. R.
Barchet
,
H. P.
Foote
, and
W. F.
Sandusky
,
Wind Energy Resource Atlas of the United States
(
Taylor & Francis Group
,
LLC
,
2006
), p.
44
.
41.
C. G.
Justus
, “
Wind energy statistics for large arrays of wind turbines (New England and Central U.S. Regions)
,”
Sol. Energy
20
(
5
),
379
386
(
1978
).
42.
International Electrotechnical Committee IEC 61400–1
.
Wind Turbines. Part 1: Design Requirements
, 3rd ed. (
IEC
,
Geneva, Switzerland
,
2005
).
43.
International Electrotechnical Committee IEC. 61400–3
.
Wind Turbines. Part 3: Design Requirements for Offshore Wind Turbines
, 1st ed. (
IEC
,
Geneva, Switzerland
,
2009
).
44.
see www.homerenergy.com/microgrid-power-system-design-services.html for Microgrid Power System Design Services Using HOMER.
45.
M. A. M.
Ramli
,
A.
Hiendro
,
K.
Sedraoui
, and
S.
Twaha
, “
Optimal sizing of grid-connected photovoltaic energy system in Saudi Arabia
,”
Renewable Energy
75
,
489
495
(Mar.
2015
).
46.
M. A. M.
Ramli
,
A.
Hiendro
, and
S.
Twaha
, “
Economic analysis of PV/diesel hybrid system with flywheel energy storage
,”
Renewable Energy
78
,
398
405
(
2015
).
47.
S.
Twaha
and
M. U.
Mukhtiar
, “
Optimal hybrid renewable-based distributed generation system with feed-in tariffs and ranking technique
,” in
The 2014 IEEE International Power Engineering and Optimization Conference (PEOCO2014)
(
2014
), pp.
115
120
.
48.
Dynamic Energy & Water Solutions, see http://www.dynamic-ews.com/Tariffs/Electricity%20Tariffs/KSA.pdf for Kingdom of Saudi Arabia Electricity Tariffs,
2001
.
49.
Wind Power, see http://www.windpowermonthly.com/article/1117015/turbine-prices-fall-until-2014 for Turbine prices could fall until 2014,
2011
.
50.
A. A.
Moghaddam
,
A.
Seifi
,
T.
Niknam
, and
M. R.
Alizadeh Pahlavani
, “
Multi-objective operation management of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source
,”
Energy
36
(
11
),
6490
6507
(
2011
).
You do not currently have access to this content.