The offshore wind industry is expanding rapidly around the world due to several factors enabling this source of renewable energy. Stronger wind resources in offshore areas, lack of social and geographical constraints related to onshore wind power, the evolution of technology, and increasing demand for electricity in coastal regions as a result of a massive increase in population are some of the factors favoring the use of wind energy. The assessment of the potential global capacity that considers the different economic, environmental, and social factors and the dynamics of market, policy, and technology are vital for estimating the competitiveness of offshore wind energy in the future energy profile. There are several studies and technical reports that evaluate the potential of offshore wind energy in different countries or regions. They used a different source of data, metrics, and quantitative approaches in appraising the potential offshore wind power capacity and its cost efficiency. The critical factors that have been considered are geographical, technical, economic, environmental, and social and market elements. This paper provides a systematic review for analyzing the studies that address the potential offshore wind energy around the world and published during the 2000–2016 period. This study highlights the key criteria for assessing the potential for offshore wind energy deployment and the related tools and methods.

1.
Ackermann
,
T.
,
Leutz
,
R.
, and
Hobohm
,
J.
, “
Worldwide offshore wind potential and European projects
,” in
Power Engineering Society Summer Meeting, 2001
(IEEE,
2001
), Vol.
1
, pp.
4
9
.
2.
Archer
,
C. L.
and
Jacobson
,
M. Z.
, “
Geographical and seasonal variability of the global ‘practical’ wind resources
,”
Appl. Geogr.
45
,
119
130
(
2013
).
3.
Arent
,
D.
,
Sullivan
,
P.
,
Heimiller
,
D.
,
Lopez
,
A.
,
Eurek
,
K.
,
Badger
,
J.
,
Jørgensen
,
H. E.
,
Kelly
,
M.
,
Clarke
,
L.
, and
Luckow
,
P.
, “
Improved offshore wind resource assessment in global climate stabilization scenarios
,”
Contract
303
,
275
3000
(
2012
).
4.
Asdrubali
,
F.
,
Baldinelli
,
G.
,
D’Alessandro
,
F.
, and
Scrucca
,
F.
, “
Life cycle assessment of electricity production from renewable energies: Review and results harmonization
,”
Renewable Sustainable Energy Rev.
42
,
1113
1122
(
2015
).
5.
Asif
,
M.
and
Muneer
,
T.
, “
Energy supply, its demand and security issues for developed and emerging economies
,”
Renewable Sustainable Energy Rev.
11
(
7
),
1388
1413
(
2007
).
6.
Barthelmie
,
R. J.
,
Frandsen
,
S.
,
Pryor
,
S.
,
Morgan
,
C.
,
Henderson
,
A.
,
Sųrensen
,
H. C.
, et al, “
Offshore wind potential in Europe and review of offshore resource modeling techniques
,” in
Offshore Wind Energy
(CD-ROM) (
2002
).
7.
Bonou
,
A.
,
Laurent
,
A.
, and
Olsen
,
S. I.
, “
Life cycle assessment of onshore and offshore wind energy-from theory to application
,”
Appl. Energy
180
,
327
337
(
2016
).
8.
Breton
,
S. P.
and
Moe
,
G.
, “
Status, plans and technologies for offshore wind turbines in Europe and North America
,”
Renewable Energy
34
(
3
),
646
654
(
2009
).
9.
Chiang
,
E. P.
,
Zainal
,
Z. A.
,
Narayana
,
A.
, and
Seetharamu
,
K. N.
,
Potential of Renewable Wave and Offshore Wind Energy Sources in Malaysia
, Marine Technology 2003 Seminar (2003).
10.
Dvorak
,
M. J.
,
Archer
,
C. L.
, and
Jacobson
,
M. Z.
, “
California offshore wind energy potential
,”
Renewable Energy
35
(
6
),
1244
1254
(
2010
).
11.
Elliot
,
D.
,
Frame
,
C.
,
Gill
,
C.
,
Hanson
,
H.
,
Moriarty
,
P.
,
Powell
,
M.
, et al, “
Offshore resource assessment and design conditions: A data requirements and gaps analysis for offshore renewable energy systems
,”
Technical Report No. DOE/EE-0696
, US Department of Energy, Washington, DC, USA (
2012
).
12.
Esteban
,
M. D.
,
Diez
,
J. J.
,
López
,
J. S.
, and
Negro
,
V.
, “
Why offshore wind energy?
,”
Renewable Energy
36
(
2
),
444
450
(
2011
).
13.
Fehrenbacher
,
K.
, http://fortune.com/2016/08/08/first-us-offshore-wind/ for This Is Where the First U.S. Offshore Wind Turbines Were Just Installed, Tech Future of Work,
2016
.
14.
Fetanat
,
A.
and
Khorasaninejad
,
E.
, “
A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran
,”
Ocean Coastal Manage.
109
,
17
28
(
2015
).
15.
Finkbeiner
,
M.
,
Schau
,
E. M.
,
Lehmann
,
A.
, and
Traverso
,
M.
, “
Towards life cycle sustainability assessment
,”
Sustainability
2
(
10
),
3309
3322
(
2010
).
16.
Gao
,
X.
,
Yang
,
H.
, and
Lu
,
L.
, “
Study on offshore wind power potential and wind farm optimization in Hong Kong
,”
Appl. Energy
130
,
519
531
(
2014
).
17.
Garrett
,
P.
and
Rønde
,
K.
, “
Life cycle assessment of wind power: Comprehensive results from a state-of-the-art approach
,”
Int. J. Life Cycle Assess.
18
(
1
),
37
48
(
2013
).
18.
Govindji
,
Al.
,
James
,
R.
, and
Carvallo
,
A.
, https://www.carbontrust.com/media/566323/ctc834-detailed-appraisal-of-the-offshore-wind-industry-in-japan.pdf for Appraisal of the Offshore Wind Industry in Japan, Carbon Trust; accessed 16 February 2017,
2014
.
19.
Guezuraga
,
B.
,
Zauner
,
R.
, and
Pölz
,
W.
, “
Life cycle assessment of two different 2 MW class wind turbines
,”
Renewable Energy
37
(
1
),
37
44
(
2012
).
20.
Guidelines for Social Life Cycle Assessment of Products
, edited by
Benoît
,
C.
(
UNEP/Earthprint
,
2010
).
21.
Hauschild
,
M. Z.
, “
Assessing environmental impacts in a life-cycle perspective
,”
Environ. Sci. Technol.
39
(
4
),
81A
88A
(
2005
).
22.
Henderson
,
A. R.
,
Morgan
,
C.
,
Smith
,
B.
,
Sørensen
,
H. C.
,
Barthelmie
,
R. J.
, and
Boesmans
,
B.
, “
Offshore wind energy in Europe—A review of the state-of-the-art
,”
Wind Energy
6
(
1
),
35
52
(
2003
).
23.
Higgins
,
P.
and
Foley
,
A.
, “
The evolution of offshore wind power in the United Kingdom
,”
Renewable Sustainable Energy Rev.
37
,
599
612
(
2014
).
24.
Hong
,
L.
and
Möller
,
B.
, “
Offshore wind energy potential in China: Under technical, spatial and economic constraints
,”
Energy
36
(
7
),
4482
4491
(
2011
).
25.
Hoogwijk
,
M.
and
Graus
,
W.
, “
Global potential of renewable energy sources: A literature assessment. Background report prepared by order of REN21
,”
Ecofys, Report No. PECSNL072975
,
2008
.
26.
Hoogwijk
,
M.
,
de Vries
,
B.
, and
Turkenburg
,
W.
, “
Assessment of the global and regional geographical, technical and economic potential of onshore wind energy
,”
Energy Econ.
26
(
5
),
889
919
(
2004
).
27.
Investopedia
, http://www.investopedia.com/terms/d/discountrate.asp for Discount rate definition; accessed 8 August
2017
.
28.
Jacobson
,
M. Z.
, “
Review of solutions to global warming, air pollution, and energy security
,”
Energy Environ. Sci.
2
(
2
),
148
173
(
2009
).
29.
Jongbloed
,
R. H.
,
van der Wal
,
J. T.
, and
Lindeboom
,
H. J.
, “
Identifying space for offshore wind energy in the North Sea. Consequences of scenario calculations for interactions with other marine uses
,”
Energy Policy
68
,
320
333
(
2014
).
30.
Kaldellis
,
J. K.
, “
Social attitude towards wind energy applications in Greece
,”
Energy Policy
33
(
5
),
595
602
(
2005
).
31.
Karlsson
,
K.
,
Mischke
,
P.
,
Miketa
,
A.
, and
Wagner
,
N. W.
, “
Global energy perspectives with an emphasis on wind energy
,” in
Dtu International Energy Report 2014
(
Technical University of Denmark
,
2014
).
32.
Kempton
,
W.
,
Archer
,
C. L.
,
Dhanju
,
A.
,
Garvine
,
R. W.
, and
Jacobson
,
M. Z.
, “
Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses
,”
Geophys. Res. Lett.
34
(
2
),
L02817
, (
2007
).
33.
Kim
,
H. C.
,
Fthenakis
,
V.
,
Choi
,
J.‐K.
, and
Turney
,
D. E.
, “
Life cycle greenhouse gas emissions of thin‐film, photovoltaic electricity generation
,”
J. Ind. Ecol.
16
,
S110
S121
(
2012
).
34.
Kim
,
J. Y.
,
Oh
,
K. Y.
,
Kang
,
K. S.
, and
Lee
,
J. S.
, “
Site selection of offshore wind farms around the Korean Peninsula through economic evaluation
,”
Renewable Energy
54
,
189
195
(
2013
).
35.
Lee
,
M. E.
,
Kim
,
G.
,
Jeong
,
S. T.
,
Ko
,
D. H.
, and
Kang
,
K. S.
, “
Assessment of offshore wind energy at Younggwang in Korea
,”
Renewable Sustainable Energy Rev.
21
,
131
141
(
2013
).
36.
Levitt
,
A. C.
,
Kempton
,
W.
,
Smith
,
A. P.
,
Musial
,
W.
, and
Firestone
,
J.
, “
Pricing offshore wind power
,”
Energy Policy
39
(
10
),
6408
6421
(
2011
).
37.
Li
,
C. B.
,
Chen
,
H. Y.
,
Zhu
,
J.
,
Zuo
,
J.
,
Zillante
,
G.
, and
Zhao
,
Z. Y.
, “
Comprehensive assessment of flexibility of the wind power industry chain
,”
Renewable Energy
74
,
18
26
(
2015
).
38.
Li
,
G.
, “
Feasibility of large-scale offshore wind power for Hong Kong—A preliminary study
,”
Renewable Energy
21
(
3
),
387
402
(
2000
).
39.
Lu
,
X.
,
McElroy
,
M. B.
, and
Kiviluoma
,
J.
, “
Global potential for wind-generated electricity
,”
Proc. Natl. Acad. Sci.
106
(
27
),
10933
10938
(
2009
).
40.
Mesoscale Model
, http://www.hko.gov.hk/nhm/mesomodel_e.htm for HKO Center; accessed 16 February 2017 (
2015
).
41.
Möller
,
B.
, “
Continuous spatial modeling to analyze planning and economic consequences of offshore wind energy
,”
Energy Policy
39
(
2
),
511
517
(
2011
).
42.
Möller
,
B.
,
Hong
,
L.
,
Lonsing
,
R.
, and
Hvelplund
,
F.
, “
Evaluation of offshore wind resources by the scale of development
,”
Energy
48
(
1
),
314
322
(
2012
).
43.
Mostafaeipour
,
A.
, “
Feasibility study of offshore wind turbine installation in Iran compared with the world
,”
Renewable Sustainable Energy Rev.
14
(
7
),
1722
1743
(
2010
).
44.
Musial
,
W.
and
Butterfield
,
S.
, “
Future for offshore wind energy in the United States
,” in
EnergyOcean 2004 Conference
(
2004
), pp.
4
6
.
45.
Norris
,
G. A.
, “
Social impacts in product life cycles-towards life cycle attribute assessment
,”
Int. J. Life Cycle Assess.
11
(
1
),
97
104
(
2006
).
46.
Oh
,
K. Y.
,
Kim
,
J. Y.
,
Lee
,
J. K.
,
Ryu
,
M. S.
, and
Lee
,
J. S.
, “
An assessment of wind energy potential at the demonstration offshore winds farm in Korea
,”
Energy
46
(
1
),
555
563
(
2012a
).
47.
Oh
,
K. Y.
,
Kim
,
J. Y.
,
Lee
,
J. S.
, and
Ryu
,
K. W.
, “
Wind resource assessment around Korean Peninsula for a feasibility study on 100 MW class offshore wind farm
,”
Renewable Energy
42
,
217
226
(
2012b
).
48.
O’Keeffe
,
A.
and
Haggett
,
C.
, “
An investigation into the potential barriers facing the development of offshore wind energy in Scotland: Case study–Firth of Forth offshore wind farm
,”
Renewable Sustainable Energy Rev.
16
(
6
),
3711
3721
(
2012
).
49.
Rodrigues
,
S.
,
Restrepo
,
C.
,
Kontos
,
E.
,
Pinto
,
R. T.
, and
Bauer
,
P.
, “
Trends in offshore wind projects
,”
Renewable Sustainable Energy Rev.
49
,
1114
1135
(
2015
).
50.
Rousseau
,
D. M.
,
Manning
,
J.
, and
Denyer
,
D.
, “
11 evidence in management and organizational science: Assembling the field’s full weight of scientific knowledge through syntheses
,”
Acad. Manage. Ann.
2
(
1
),
475
515
(
2008
).
51.
Schillings
,
C.
,
Wanderer
,
T.
,
Cameron
,
L.
,
van der Wal
,
J. T.
,
Jacquemin
,
J.
, and
Veum
,
K.
, “
A decision support system for assessing offshore wind energy potential in the North Sea
,”
Energy Policy
49
,
541
551
(
2012
).
52.
Schwägerl
,
Ch.
, https://www.theguardian.com/environment/2016/oct/20/europes-offshore-wind-industry-booming-as-costs-fall for Europes-offshore-wind-industry-booming-as-costs-fall; accessed 1 June 2017 (
2016
).
53.
Schwartz
,
M.
,
Heimiller
,
D.
,
Haymes
,
S.
, and
Musial
,
W.
, “
Assessment of offshore wind energy resources for the United States,” National Renewable Energy Laboratory, Golden, CO
,
Technical Report No. NREL/TP-500-45889
,
2010
.
54.
See http://www.businessdictionary.com/definition/economic-sustainability.html for “Economic Sustainability, In Business Dictionary”; accessed 16 February 2017.
55.
See http://www.globalwindatlas.com/ for Global Wind Atlas; accessed 16 February 2017.
56.
See http://www.gwec.net/wp‐content/uploads/2015/03/GWEC_Global_Wind_2014_Report_LR.pdf for Global Wind Report Annual Market; accessed 16 February 2017,
2014
.
57.
See http://www.lorc.dk/offshore-wind-farms-map for List of Offshore Wind Farms; accessed 16 February 2017.
59.
See http://www.gwec.net/wp-content/uploads/2015/06/prefeasabilityTN.pdf for Pre-Feasibility Study for Offshore Wind Farm Development in Tamil Nadu; accessed 16 February 2017 (
2015
).
60.
See https://phys.org/news/2014-03-hydro-storage-solution-renewables.html for Pumped hydro offers storage solution for renewables; accessed 16 February 2017 (
2014
).
61.
See http://www.gwec.net/global‐figures/wind‐in‐numbers/ for Wind in Numbers; accessed 16 February 2017.
62.
Snyder
,
B.
and
Kaiser
,
M. J.
, “
A comparison of offshore wind power development in Europe and the US: Patterns and drivers of development
,”
Appl. Energy
86
(
10
),
1845
1856
(
2009a
).
63.
Snyder
,
B.
and
Kaiser
,
M. J.
, “
Ecological and economic cost-benefit analysis of offshore wind energy
,”
Renewable Energy
34
(
6
),
1567
1578
(
2009b
).
64.
Subramanian
,
N.
and
Ramanathan
,
R.
, “
A review of applications of analytic hierarchy process in operations management
,”
Int. J. Prod. Econ.
138
(
2
),
215
241
(
2012
).
65.
Sun
,
X.
,
Huang
,
D.
, and
Wu
,
G.
, “
The current state of offshore wind energy technology development
,”
Energy
41
(
1
),
298
312
(
2012
).
66.
Swarr
,
T. E.
, “
Societal life cycle assessment—could you repeat the question?
,”
Int. J. Life Cycle Assess.
14
(
4
),
285
289
(
2009
).
67.
Swart
,
R. J.
,
Coppens
,
C.
,
Gordijn
,
H.
,
Piek
,
M.
,
Ruyssenaars
,
P.
,
Schrander
,
J. J.
, et al,
Europe's Onshore and Offshore Wind Energy Potential: An Assessment of Environmental and Economic Constraints
(
European Environment Agency
,
2009
), p.
90
.
68.
Tranfield
,
D.
,
Denyer
,
D.
, and
Smart
,
P.
, “
Towards a methodology for developing evidence‐informed management knowledge by means of systematic review
,”
Br. J. Manage.
14
(
3
),
207
222
(
2003
).
69.
Vázquez-Carrasco
,
R.
and
López-Pérez
,
M. E.
Small & medium-sized enterprises and corporate social responsibility: A systematic review of the literature
,”
Qual. Quant.
47
(
6
),
3205
3218
(
2013
).
70.
Vincent
,
C. L.
,
Draxl
,
C.
, and
Nielsen
,
J. R.
, https://www.windpower.org/download/559/1_mesoscale_modelling_safetypdf for “Mesoscale meteorological models, National Laboratory for sustainable energy, DTU; accessed 8 August
2017
.
71.
WRF
, http://www.wrf-model.org/index.php for The Weather Research and Forecasting Model; accessed 8 August 2017.
72.
Wu
,
Y.
,
Zhang
,
J.
,
Yuan
,
J.
,
Geng
,
S.
, and
Zhang
,
H.
, “
Study of decision framework of offshore wind power station site selection based on ELECTRE-III under intuitionistic fuzzy environment: A case of China
,”
Energy Convers. Manage.
113
,
66
81
(
2016
).
73.
Wüstenhagen
,
R.
,
Wolsink
,
M.
, and
Bürer
,
M. J.
, “
Social acceptance of renewable energy innovation: An introduction to the concept
,”
Energy Policy
35
(
5
),
2683
2691
(
2007
).
74.
Yamaguchi
,
A.
,
Ishihara
,
T.
, and
Fujino
,
Y.
, “
An assessment of offshore wind energy potential using mesoscale model and GIS
,” in
Proceedings of European Wind Energy Conference
(
2004
).
75.
Yi
,
H.
and
Feiock
,
R. C.
, “
Renewable energy politics: Policy typologies, policy tools, and state deployment of renewables
,”
Policy Stud. J.
42
(
3
),
391
415
(
2014
).
76.
Zhang
,
H.
,
Li
,
L.
,
Zhou
,
D.
, and
Zhou
,
P.
, “
Political connections, government subsidies, and firm financial performance: Evidence from renewable energy manufacturing in China
,”
Renewable Energy
63
,
330
336
(
2014
).
77.
Zhao
,
Z. Y.
,
Zhu
,
J.
, and
Zuo
,
J.
, “
The flexibility of wind power industry chain for environmental turbulence: A matching model study
,”
Renewable Energy
83
,
375
383
(
2015
).
78.
Zhixin
,
W.
,
Chuanwen
,
J.
,
Qian
,
A.
, and
Chengmin
,
W.
, “
The key technology of offshore wind farm and its new development in China
,”
Renewable Sustainable Energy Rev.
13
(
1
),
216
222
(
2009
).
You do not currently have access to this content.