The optical, electrical, morphological, and structural properties of low cost indium tin oxide (ITO)/TiO2/CdS/CdSe/ZnS quantum dot (QD) solar cells with the inexpensive silver/polyaniline counter electrode (CE) are reported in this study. The composition of these devices was verified by Energy Dispersive X-Ray Analysis (EDX). The spin coated mesoporous TiO2 layers on ITO glass substrates were sensitized with cadmium sulphide/cadmium selenide quantum dots using different number of SILAR (successive ionic layer adsorption and reaction) cycles. The ZnS film was also deposited using the same procedure. The low cost counter electrodes were prepared separately on stainless steel substrate by electro-chemical polymerization. The solar cells were tested by pouring the polysulphide electrolyte between the two electrodes. The devices showed an increase in PCE (power conversion efficiency) up to the 3 SILAR cycles, and decreases in PCE were observed for further SILAR cycles. The power conversion efficiency is as high as 5.0% for 3 SILAR cycles. UV-Vis-Spectroscopy measurements of the devices showed an increase in absorption spectra starting from 1.7 eV, which is well matched with the band gap of CdSe QDs. The enhancement in absorbance was found to linearly scale with the number of SILAR cycles up to 5 C and saturating for further SILAR cycles. The absorbance window continued up to 2.4 eV, the band gap of CdS QDs and the absorbance due to the Titania layer was found to start at 3.2 eV (band gap value of Titania). X-ray Diffraction Patterns showed that the particle size of CdS and CdSe QDs increased with the number of SILAR cycles. However, the intensity peak of CdS QDs was not observed for 5 C and higher SILAR cycles. The scanning electron microscope images of devices revealed capping of CdS QDs by CdSe QDs for 5 C and higher SILAR cycles. The observations revealed that CdS QDs were capped by CdSe QDs for 5 C and higher SILAR cycles, resulting decrease in PCE of these devices. The decrease in PCE is attributed to the poor charge collection of the charges contributed by CdS QDs due to its capping by CdSe QDs.

1.
B.
O'Regan
and
M.
Grätzel
, “
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
,”
Nature
353
,
737
740
(
1991
).
2.
M.
Grätzel
, “
Dye-sensitized solar cells
,”
J. Photochem. Photobiol. C
4
,
145
153
(
2003
).
3.
M.
Grätzel
, “
Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells
,”
J. Photochem. Photobiol. A
164
,
3
14
(
2004
).
4.
S.
Zhang
,
X.
Yang
,
Y.
Numata
, and
L.
Han
, “
Highly Efficient Dye-Sensitized Solar Cells: Progress and Future Challenges
,”
Energy Environ. Sci.
6
,
1443
(
2013
).
5.
C.-C.
Chen
,
L.
Dou
,
J.
Gao
,
W.
Chang
,
G.
Li
, and
Y.
Yang
, “
High-performance semitransparent polymer solar cells possessing tandem structures
,”
Energy Environ. Sci.
6
,
2714–2720
(
2013
).
6.
J. H.
Heo
,
S. H.
Im
,
J. H.
Noh
,
T. N.
Mandal
,
C.
Lim
,
J. A.
Chang
 et al, “
Efficient Inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors
,”
Nat. Photonics
7
,
486
(
2013
).
7.
J.
Burschka
,
N.
Pellet
,
S.
Moon
,
R.
Humphry-Baker
,
P.
Gao
,
M. K.
Nazeeruddin
 et al, “
Sequential deposition as a route to high-performance perovskite sensitized solar cells
,”
Nature
499
,
316
(
2013
).
8.
M. A.
Green
and
K.
Emery
, “
Solar cell efficiency tables
,”
Prog Photovoltics Res. Appl.
1
,
25
(
1993
).
9.
P. V.
Kamat
, “
Quantum dot solar cells. Semiconductor nanocrystals as light harvesters
,”
J. Phys. Chem. C
112
,
18737
(
2008
).
10.
R.
Vogel
,
P.
Hoyer
, and
H.
Weller
, “
Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors
,”
J. Phys. Chem.
98
,
3183
3188
(
1994
).
11.
H. K.
Jun
,
M. A.
Careem
, and
A. K.
Arof
, “
Quantum dot-sensitized solar cells–perspective and recent developments: A review of Cd chalcogenide quantum dots as sensitizers
,”
Renewable Sustainable Energy Rev.
22
,
148
167
(
2013
).
12.
P. V.
Kamat
, “
Quantum dot solar cells: The next big thing in photovoltaics
,”
J. Phys. Chem. Lett.
4
,
908
918
(
2013
).
13.
S.
Rühle
,
M.
Shalom
, and
A.
Zaban
, “
Quantum-dot-sensitized solar cells
,”
ChemPhysChem
11
,
2290
2304
(
2010
).
14.
W. W.
Yu
,
L.
Qu
,
W.
Gu
, and
X.
Peng
, “
Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals
,”
Chem. Mater.
15
,
2854
(
2003
).
15.
P.
Wang
,
S. M.
Zakeeruddin
,
J. E.
Moser
,
R.
Humphry-Baker
,
P.
Comte
,
V.
Aranyos
 et al, “
Stable new sensitizer with improved light harvesting for nanocrystalline dye-sensitized solar cells
,”
Adv. Mater.
16
,
1806
(
2004
).
16.
R.
Vogel
,
K.
Pohl
, and
H.
Weller
, “
Sensitization of highly porous, polycrystalline TiO2 electrodes by quantum sized CdS
,”
Chem. Phys. Lett.
174
,
241
(
1990
).
17.
A. J.
Nozik
,
M. C.
Beard
,
J. M.
Luther
,
M.
Law
,
R. J.
Ellingson
, and
J. C.
Johnson
, “
Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells
,”
Chem. Rev.
110
,
6873
(
2010
).
18.
P. K.
Santra
and
P. V.
Kamat
, “
Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides
,”
J. Am. Chem. Soc.
135
,
877
(
2013
).
19.
J. A.
Switzer
and
G.
Hodes
, “
Electrodeposition and chemical deposition of functional nanomaterials
,”
MRS Bull.
35
,
743
(
2010
).
20.
D. R.
Baker
and
P. V.
Kamat
, “
Photosensitization of TiO2 nanostructures with cds quantum dots: particulate versus tubular support architectures
,”
Adv. Funct. Mater.
19
,
805–811
(
2009
).
21.
A.
Tibtumtae
,
K. L.
Wu
,
H. Y.
Tung
,
M. W.
Lee
, and
G. J.
Wang
, “
Ag2S quantum dot-sensitized solar cells
,”
Electrochem. Commun.
12
,
1158
1160
(
2010
).
22.
I.
Robel
,
V.
Subramanian
,
M.
Kuno
, and
P. V.
Kamat
, “
Quantum dot solar cells: Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films
,”
J. Am. Chem. Soc.
128
,
2385
2393
(
2006
).
23.
R.
Plass
,
S.
Pelet
,
J.
Krueger
,
M.
Gratzel
, and
U.
Bach
, “
Quantum dot sensitization of organic–inorganic hybrid solar cells
,”
J. Phys. Chem. B
106
,
7578
7580
(
2002
).
24.
J. Y.
Chang
,
L. F.
Su
,
C. H.
Li
,
C. C.
Chang
, and
J. M.
Lin
, “
Efficient “green” quantum dot-sensitized solar cells based on Cu2S-CuInS2-ZnSe architecture
,”
Chem. Commun.
48
,
4848
4850
(
2012
).
25.
Y.
Saito
,
W.
Kubo
,
T.
Kitamura
,
Y.
Wada
, and
S.
Yanagida
, “
I/I3 redox reaction behavior on poly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells
,”
J. Photochem. Photobiol. A
164
,
153
157
(
2004
).
26.
J. G.
Chen
,
H. Y.
Wei
, and
K. C.
Ho
, “
Using modified poly(3,4-ethylene dioxythiophene): Poly(styrene sulfonate) film as a counter electrode in dye-sensitized solar cells
,”
Energy Mater. Sol. Cells
91
,
1472
1477
(
2007
).
27.
W.
Hong
,
Y.
Xu
,
G.
Lu
,
C.
Li
, and
G.
Shi
, “
Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells
,”
Electrochem. Commun.
10
,
1555
1558
(
2008
).
28.
T.
Muto
,
M.
Ikegami
, and
T.
Miyasaka
, “
Polythiophene-based mesoporous counter electrodes for plastic dye-sensitized solar cells
,”
J. Electrochem. Soc.
157
,
B1195
B1200
(
2010
).
29.
Q.
Tang
,
H.
Cai
,
S.
Yaun
, and
X.
Wang
, “
Counter electrodes from double-layered polyaniline nanostructures for dye-sensitized solar cell applications
,”
J. Mater. Chem. A
1
,
317
323
(
2013
).
30.
S.
Ghani
,
R.
Sharif
,
S.
Shahzadi
,
N.
Zafar
,
A. W.
Anwar
,
A.
Ashraf
,
A. A.
Zaidi
,
A. H.
Kamboh
, and
S.
Bashir
, “
Simple and inexpensive electrodeposited silver/polyaniline composite counter electrodes for dye-sensitized solar cells
,”
J. Mater. Sci.
50
,
1469
1477
(
2015
).
31.
J.
Stejskal
and
R. G.
Gilbert
, “
Polyaniline: Preparation of a conducting polymer (IUPAC technical report)
,”
Pure Appl. Chem.
74
,
857
867
(
2002
).
32.
N. V.
Blinova
,
J.
Stejskal
,
M.
Trchová
,
J.
Prokeš
, and
M.
Omastová
, “
Polyaniline and polypyrrole: A comparative study of the preparation
,”
Eur. Polym. J.
43
,
2331
2341
(
2007
).
33.
H. J.
Lee
,
D. Y.
Kim
,
J. S.
Yoo
,
J.
Bang
,
S.
Kim
, and
S. M.
Park
, “
Anchoring cadmium chalcogenide quantum dots (QD) onto stable oxide semiconductor for QD sensitized solar cells
,”
Bull. Korean Chem. Soc.
28
,
953
958
(
2007
).
34.
H. J.
Lee
,
J. H.
Yum
,
H. C.
Leventis
,
S. M.
Zakeeruddin
,
S. A.
Haque
,
P.
Chen
,
S. I.
Seok
,
M.
Grätzel
, and
M. K.
Nazeeruddin
, “
CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full sun intensity
,”
J. Phys. Chem. C
112
,
11600
11608
(
2008
).
35.
W. J.
Lee
,
S. H.
Kang
,
S. K.
Min
,
Y. E.
Sung
, and
S. H.
Han
, “
Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum
,”
Electrochem. Commun.
10
,
1579
1582
(
2008
).
36.
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T. Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
, “
Efficient tandem polymer solar cells fabricated by all-solution processing
,”
Science
317
,
222
225
(
2007
).
37.
T.
López-Luke
,
A.
Wolcott
,
L.-P.
Xu
,
S.
Chen
,
Z.
Wen
,
J.
Li
,
E. D. L.
Rosa
, and
J. Z.
Zhang
, “
Nitrogen-doped and CdSe quantum-dot-sensitized nanocrystalline TiO2 films for solar energy conversion applications
,”
J. Phys. Chem. C
112
,
1282
1292
(
2008
).
38.
I.
Mora-Sero
,
S.
Gimenez
,
T.
Moehl
,
F.
Fabregat-Santiago
,
T.
LanaVillareal
,
R.
Gómez
, and
J.
Bisquert
, “
Factors determining the photovoltaic performance of a CdSe quantum dot sensitized solar cell: The role of the linker molecule and of the counter electrode
,”
Nanotechnology
19
,
424007
(
2008
).
39.
Q.
Shen
,
J.
Kobayashi
,
L. J.
Diguna
, and
T.
Toyoda
, “
Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells
,”
J. Appl. Phys.
103
,
084304
(
2008
).
40.
Y.
Tachibana
,
K.
Umekita
,
Y.
Otsuka
, and
S.
Kuwabata
, “
Performance improvement of CdS quantum dots sensitized TiO2 solar cells by introducing a dense TiO2 blocking layer
,”
J. Phys. D: Appl. Phys.
41
,
102002
(
2008
).
41.
S.
Cheng
,
W.
Fu
,
H.
Yang
,
L.
Zhang
,
J.
Ma
,
H.
Zhao
,
M.
Sun
, and
L.
Yang
, “
Photoelectrochemical performance of multiple semiconductors (CdS/CdSe/ZnS) cosensitized TiO2 photoelectrodes
,”
J. Phys. Chem. C
116
,
2615
2621
(
2012
).
42.
T. T.
Ha
,
Q. V.
Lam
, and
T. D.
Huynh
,
Int. J. Latest Res. Sci. Technol.
3
,
127
132
(
2014
).
43.
M.
Kim
,
A.
Ochirbant
, and
H. J.
Lee
, “
CuS/CdS quantum dot composite sensitizer and its applications
,”
Langmuir
31
,
7609
(
2015
).
44.
R. M.
Prasad
and
H. M.
Pathan
, “
Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells
,”
Nanotechnology
27
,
145402
(
2016
).
45.
Y.
Chunze
,
L.
Lin
,
H.
Jing
,
N.
Zhijun
,
S.
Licheng
, and
A.
Hans
, “
Improving the photocurrent in quantum-dot-sensitized solar cells by employing alloy PbxCd1-xS quantum dots as photosensitizers
,”
Nanomaterials
6
,
97
(
2016
).
46.
J.
Lungu
,
N.
Stefan
,
G.
Prodan
,
A.
Georgescu
,
A.
Mandes
,
V.
Ciupina
,
I. N.
Mihailescu
, and
M. A.
Girtu
,
Dig. J. Nanomater. Biostruct.
10
,
967
976
(
2015
).
47.
L. W.
Chong
,
H. T.
Chien
, and
Y. L.
Lee
, “
Assembly of CdSe onto mesoporous TiO2 films induced by a self-assembled monolayer for quantum dot-sensitized solar cell applications
,”
J. Power Sources
195
,
5109
5113
(
2010
).
48.
Q.
Shen
and
T.
Toyoda
, “
Characterization of nanostructured TiO2 Electrodes sensitized with CdSe quantum dots using photoacoustic and photoelectrochemical current methods
,”
J. Appl. Phys.
43
,
2946
2951
(
2004
).
49.
Y.
Xiao
,
J. Y.
Lin
,
W.
Jihuai
,
S. Y.
Tai
,
G.
Yue
, and
T. W.
Lin
, “
Dye-sensitized solar cells with high-performance polyaniline/multi-wall carbon nanotube counter electrodes electropolymerized by a pulse potentiostatic technique
,”
J. Power Sources
233
,
320
325
(
2013
).
50.
D.
Pathania
,
S.
Sarita
, and
B. S.
Rathore
,
Chalcogenide Lett.
8
,
396
404
(
2011
).
51.
A.
Ayub
,
A.
Shakoor
,
A.
Elahi
, and
T. Z.
Rizvi
, “
Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films
,”
Superlattices Microstruct.
84
,
154
164
(
2015
).
52.
A. L.
Patterson
, “
The scherrer formula for X-ray particle size determination
,”
Phys. Rev.
56
,
978
982
(
1939
).
You do not currently have access to this content.